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Chaotic advection near a three-vortex collapse
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Dynamical and statistical properties of tracer advection are studied in a family of flows produced by three
point-vortices of different signs. Tracer dynamics is analyzed by numerical construction of Poincare´ sections,
and is found to be strongly chaotic: advection pattern in the region around the center of vorticity is dominated
by a well developed stochastic sea, which grows as the vortex system’s initial conditions are set closer to those
leading to the collapse of the vortices; at the same time, the islands of regular motion around vortices, known
as vortex cores, shrink. An estimation of the core’s radii from the minimum distance of vortex approach to
each other is obtained. Tracer transport was found to be anomalous: for all of the three numerically investi-
gated cases, the variance of the tracer distribution grows faster than a linear function of time, corresponding to
a superdiffusive regime. The transport exponent varies with time decades, implying the presence of multi-
fractal transport features. Yet, its value is never too far from 3/2, indicating some kind of universality. Statistics
of Poincare´ recurrences is non-Poissonian: distributions have long power-law tails. The anomalous properties
of tracer statistics are the result of the complex structure of the advection phase space, in particular, of strong
stickiness on the boundaries between the regions of chaotic and regular motion. The role of the different phase
space structures involved in this phenomenon is analyzed. Based on this analysis, a kinetic description is
constructed, which takes into account different time and space scalings by using a fractional equation.
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I. INTRODUCTION

The understanding of the advection of passive tracers i
fundamental interest for many different fields, ranging fro
a pure mathematical problem, to transport- or mixing-rela
ones. One area extensively studied in the last decade is
so-called chaotic advection@1–9#. This phenomenon, result
ing from a chaotic nature of Lagrangian trajectories, e
hances the mixing of tracers in laminar flows, while in t
absence of chaotic advection the mixing relies on the m
less efficient mechanism of molecular diffusion.

Chaotic advection in geophysical flows is one of the i
portant areas of application, where the advected quant
vary from the ozone in the stratosphere to various polluta
in the atmosphere and ocean, or such scalar quantitie
temperature or salinity. The interest in the geophysical flo
increases the practical significance of two-dimensional~2D!
models and more specifically the advection in the system
vortices @10–18#. In addition to the large-scale geophysic
flows, 2D decaying turbulence is another example, where
inverse cascade of energy generates coherent structures~vor-
tices! that dominate the evolution of the flow@19–26#. This
type of problem represents only one facet of the interest
herent to the advection in few-vortices systems. Anot
facet is related to the transport of advected particles. I
known from different observations and numerous mod
that the transport of advected particles is anomalous and
one or another way, can be linked to the Levy-type proces
and their generalizations@27–31#. Although these results
pertain to fairly simple flows and models, there are specu
tions relating the chaotic advection in low-dimensional flo
to particle dispersion in turbulent flows~see for example a
discussion in@32#!.
1063-651X/2001/63~3!/036224~17!/$15.00 63 0362
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The interest in the chaotic advection in a three-vortex s
tem is special not only for the reasons mentioned above.
three-vortex system is integrable, and its dynamics can
described in an explicit analytical form. The addition of
tracer ~that can be regarded as another vortex of vanish
circulation! brings the number of particles in the system
four, which is a minimum number, from which the poin
vortex chaos begins@33,34#; the relative simplicity of the
system permits us to study anomalous transport in consi
able detail. A discussion on the importance of three-vor
systems can be found in@35#.

In this paper, we investigate dynamical and statisti
properties of the advection in flows produced by three po
vortices with different signs. For specific conditions on bo
the initial positions of the vortices and their strengths, t
collapse of the three vortices to a single point is then p
sible. We first summarize the motivations for this work. It
known that for systems involving a large number of vortice
the local density of vortices fluctuates, these fluctuations
related to situations when few vortices are close to each o
and form a cluster. The number of vortices included in the
clusters vary, but the typical number is around 2–3@12,36–
38#, while clusters involving four vortices or more are muc
less probable. A given cluster exists only for a definite fin
time Dt. During its existence, the notion of space-time stru
ture of the cluster~or its configuration! can be introduced,
and hence the influence of this structure on typical trac
motion and transport can be studied. Among different cl
ters, long-time transport properties will be most influenc
by clusters of vortices with the largest lifetime. The typic
size of a cluster can be approximately defined by the m
mum distance obtained between two vortices. The closer
vortices are to each other, the stronger is their mutual in
©2001 The American Physical Society24-1
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action and the longer the cluster lives. In order to change
inter vortex distances it is necessary to consider a minim
of three-vortex interactions@39,35,36#. And to bring all vor-
tices close together~strong interaction! the configuration be-
tween the three vortices has to be close to a configura
leading to a collapse of the vortices@38#. A typical lifetime
estimation of these types of vortices can be assumed t
linked to the period of the motion of three vortices that a
evolving on a close-to-collapse course. It is shown in t
paper that the closer the vortices to a collapse configurat
the larger the period of the motion, and that the growth of
period is exponential with respect to the closeness to
collapse configuration~see the Appendix!. We then expect
that some clusters may have arbitrary long lifetime. Hav
in mind to shed some light on long-time transport propert
of systems involving many vortices, we decided to consi
the simpler but nevertheless crucial case of transport pro
ties in three-vortex systems for close-to-collapse motion;
situation also provides an extreme situation best suited to
a possible universal transport property for three-vortex flo
A simple way to define how close a motion is from the ex
collapse course is through the deviations of the systems’
tial parameters from the conditions necessary for collap
For instance, one condition for collapse isK50 ~whereK is
related to the angular momentum of the system!, a close-to-
collapse motion then necessarily satisfiesuKu5«!1, and«
is the ‘‘distance’’ from the collapse condition. Hence a sp
cial attention should be given to the notion of ‘‘close-t
collapse motion,’’ as in the whole paper we are referring
close for a small ‘‘distance’’ of the system in parame
space from the collapse conditions. And we insist that
‘‘close-to-collapse’’ motions in the previous sense, no c
lapse of the vortices occurs and the minimum distance
approach between the vortices is finite. In this paper the
tion of the vortices chosen is periodic, which retains the p
sibility of investigating long-time transport properties
these types of flows. To conduct our study, we use the m
odology and the results of our previous works. The dynam
of tracers is analyzed in a spirit similar to@40#, where the
structure of the advection pattern~chaotic sea, resonant is
lands, stochastic layers, coherent cores, etc! was investigated
numerically and analytically for the case of three identi
vortices. Transport properties of the advection in that p
ticular case~where no collapse or near-collapse vortex m
tion is possible! were found to be anomalous in@41#. When
vortex circulations have different signs, their dynamics m
change considerably; the collapse phenomenon being on
the most striking examples. The motion of vortices in t
vicinity of the collapse~when the collapse conditions are ju
slightly violated! was studied in@42#, where different routes
in parameter space all leading to the collapse were outlin
While the kinetics of advected particles in noncollapsi
three-vortex flows was described in@41#, the situation with
the advection in the near-collapse flows remained unclea
this article we describe different topological structures of
advection pattern, depending on how far is the vortex sys
from the collapse conditions. We can speculate, that
characteristics of the transport of a three-vortex system
be extended to the case of many-vortex flows, since the
03622
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vected particle finds itself quite often in the vicinity of
cluster of 3–4 vortices, that define the advection kinetics
a fairly long time-span. For our study, we chose three diff
ent cases, corresponding to a specific route to collapse:
from collapse situation, an intermediate one, and one n
the collapse. In these three cases the collapse of the vor
is never reached and the motion of the vortices is perio
which allows the study of advection for large times and
better understanding of transport in three-vortex flows, as
consider here an extreme case with bounded motion, nam
the vicinity of collapse configuration.

In Sec. II, we present the basic equations of the po
vortex dynamics, and discuss the collapse conditions i
three-vortex system. These results are based on the prev
studies of the point-vortex collapse@39,43–47#. We use the
notations introduced in@42#, and develop some argument
tion related to our choice of approaching the initial config
ration of the vortex system corresponding to the collap
configuration. Advection equations are introduced in Sec.
where we present different tools used to investigate the
namic properties of tracers. We focus on Poincare´ sections,
topology of the phase space, and trajectories, while in S
IV we present different statistical results. They include v
locity distributions, distributions of displacements and
moments, distribution of the Poincare´ recurrences, etc. An
important point of Sec. IV is to understand better how t
different regions of phase space influence the statistical p
erties of trajectories of advected particles.

On the basis of the obtained statistical information
consider kinetics of advected particles in Sec. V. Fractio
kinetics is involved in that description, and correspondi
scalings and characteristic exponents are estimated on
basis of the results of Sec. IV. Motivation for the ‘‘3/2 law
of the transport is speculated, as well as the multifrac
structure of kinetics. Finally, in the Conclusion we discu
different implications of the obtained results and a possibi
to exploit them for the analysis of the advection in mul
vortex systems.

II. NEAR-COLLAPSE VORTEX DYNAMICS

The evolution of a system ofN point vortices can be
described by a Hamiltonian system ofN interacting particles
~see for instance@48,65,66#!. The nature of the interaction
depends on the geometry of the domain occupied by
fluid. For the case of an unbounded plane, the system’s e
lution is represented by

kl żl522i
]H

] z̄l

, ż̄l52i
]H

]~klzl !
~ l 51,•••,N! ~1!

with the Hamiltonian

H52
1

2p (
l .m

klkm lnuzl2zmu5
1

4p
ln L, ~2!
4-2
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CHAOTIC ADVECTION NEAR A THREE-VORTEX COLLAPSE PHYSICAL REVIEW E63 036224
zl5xl1 iy l is the complex coordinate of the vortexl, kl its
strength and the couple (klzl ,z̄) are the conjugate variable
of the HamiltonianH, to whom a new energy parameter
associated

L[e4pH5 )
lÞm

uzl2zmuklkm, ~3!

in order to simplify subsequent formulas.
The resulting complex velocity fieldv is given by the sum

of the individual vortex contributions:

v~z,t !5
1

2p i (
l 51

N

kl

1

z̄2 z̄l~ t !
. ~4!

Whenzl evolves according to Eqs.~1!, v provides a solution
of the two-dimensional Euler equation, describing the d
namics of a singular distribution of vorticity

v~z!5(
l 51

N

kld@z2zl~ t !# ~5!

in an ideal incompressible two-dimensional fluid.
The motion equations~1! have, besides the energy, thr

other conserved quantities resulting from the translatio
and rotational invariance ofH:

Q1 iP5(
l 51

N

klzl , L25(
l 51

N

kl uzl u2. ~6!

It can be easily verified, that there are three independent
integrals in involution:H, Q21P2, and L2, from which it
follows, that the motion of three vortices is always int
grable. An analysis of possible regimes of the motion
three vortices and their classification can be found in@39,46#.

Among the different types of motion, there is an impo
tant special case known as vortex collapse. This motio
available when the sum of inverse vortex circulations~har-
monic mean! is zero,

(
l 51

3
1

kl
50 ~7!

and vortex positions are such that the modified angular
mentumK, computed in the reference frame for which t
center of vorticity is placed at the origin, vanishes

K[S (
l 51

3

kl D L22~Q21P2!5 (
lÞm

3

klkmuzi2zj u250 . ~8!

Note, that the conditions~7! and ~8! do not specify the mo-
tion uniquely, rather, they define a range of energies,
which the collapse is possible@once the values ofkl satisfy-
ing; Eq. ~7! are given#. When both of the conditions ar
satisfied, the solutions of Eq.~1! are singular and all three
vortices collide at the center of vorticity in a finite time
Depending on the orientation of the vortex triangle, the c
lapse timetc can be either positive or negative. The fir
03622
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possibility, tc.0, corresponds to an actual collapse, wh
for tc,0 the vortex configuration expands without bound
These two cases are exact images of each other unde
time-reversal symmetry, and we refer to both of them
vortex collapse, keeping in mind, that fortc,0 the collapse
singularity lies backward in time. During the motion, th
vortex configuration stays similar to the initial one, mea
while the area of the triangle, formed by the three vortic
grows/decreases linearly in time. We refer the reader
@39,46,42# for more details.

When the collapse conditions~7! and~8! are satisfied only
approximately, the motion has a specific ‘‘near-collaps
type characterized by an emergence of new scales of
tances and velocities, which differ significantly from the in
tial ones@42#. A detailed analysis of the near-collapse d
namics of three vortices was performed in@42# for the case
when two of the vortices have the same strength. A multitu
of motion regimes was found in the vicinity of collaps
different regimes are distinguished by the way the colla
conditions~7! and ~8! are violated, i.e., whether the comb
nations(1/kl andK are greater, less, or equal to zero. Mor
over, for some of these combinations, the motion type a
depends on the energyL of the vortex configuration; for
example, when(1/kl,0 andK.0 there exist critical ener-
gies Lc1

and Lc2
, such that in the rangeLc1

.L.Lc2
the

motion has two branches of periodic motion, forL5Lc2
the

motion is aperiodic, and forL.Lc2
there is only one peri-

odic branch left. A classification of the near-collapse moti
regimes, including the behavior of their length and tim
scales as the collapse is approached, can be found in@42#.

In order to carry out a detailed study of the advection
close-to-collapse situations, we restrict our consideration
specific one-parameter family of near-collapsing vortex s
tems, defined as follows.

~1! Only one of the collapse conditions, the strength co
dition ~7!, is violated; the second condition~8! is satisfied,
i.e., K50.

~2! The two positive vortices are identical, by an appr
priate choice of time units their strength can be put to 1;
other words, we fixk15k251. The circulation of the third
vortex is negative,k3[2k, (k.0). In this situation, the
collapse happens when the strength of the third vor
reaches a critical valuek5kc[1/2. The ‘‘distance’’ of the
system from the collapse can be measured by the amou
the strength detuningd,

d[kc2k51/22k. ~9!

We will be considering only the cased.0.
~3! The energy of the vortex configurationL is fixed to a

constant valueL50.9.

The first two conditions ensure the relative vortex moti
to be periodic, and the choice of energy is such that in
approach to collapse (d→0) the maximum intervortex dis
tance grows very slowly~no noticeable changes in the rang
of d considered below! while the minimum intervortex dis-
tance rapidly approaches zero. It gives us a convenient ‘‘c
lapse in a box’’ setting, where vortices initially separated
4-3
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X. LEONCINI, L. KUZNETSOV, AND G. M. ZASLAVSKY PHYSICAL REVIEW E 63 036224
a distance of order one are brought arbitrarily close~con-
trolled byd) together, which may be of interest for studies
transport in many-vortex systems. For instance, the abilit
bring vortices closer to each other by orders of magnitu
makes these three-vortex processes a dominant intera
mechanism in a rare gas of vortex patches@38#.

Before proceeding to the discussion of the advection,
will briefly summarize the results from@42# pertaining to our
case. The dynamics of a three-vortex system with two id
tical vortices can be mapped to a one-dimensional Ham
tonian system describing the motion of a particle with a u
mass and zero total energy in an effective potential, t
depends on the strength of the third vortexk and the con-
stants of motionL andK ~see the Appendix!. The dynamical
variable X of this one-dimensional system is equal to t
squared distance between the two positive vortices

X[uz22z1u2, ~10!

the other two distances can be found from the expression
L and K. And in our special case (K50) the motion is
confined between two single roots of the potential,

Xmin,X,Xmax, ~11!

where

Xmin[S 12k

2k D k/d

L21/2d, Xmax[S 1

2kD k/d

L21/2d,

~12!

which implies thatX(t) is a periodic function of time, and
consequently the other inter-vortex distances are too, i.e.
relative motion of vortices in our one-parameter family
always periodic.

As the collapse is approached (k→1/2, d→0), the mo-
tion tends to cover all length scales:Xmin→0, Xmax→`, and
its period diverges as

T;
1

d
L21/2d ~13!

~see the Appendix for the derivation!. The influence of this
behavior on the properties of advection is investigated in
next section.

III. DYNAMICS OF THE ADVECTION

A passive particle~tracer! follows the flow according to
the advection equation

ż5v~z,t !, ~14!

wherez(t) represent the tracer trajectory, andv is the veloc-
ity field. In the case of a point vortex system, the veloc
field is given by Eq.~4!. The incompressibility of the flow
allows us to write the advection equation~14! in a Hamil-
tonian form:
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]C

] z̄
, ż̄5 i

]C

]z
, ~15!

where a stream function

C~z,z̄,t !52
1

2p (
l 51

3

kl lnuz2zl~ t !u ~16!

acts as a Hamiltonian. This system in nonautonomous, s
the stream function depends on time through the vortex
ordinateszl(t). The character of this dependence~periodic or
not! is important for further analysis. Below we will show
that although Eq.~16! is quasiperiodic, it can be made per
odic by an appropriate coordinate transformation, wh
means that the advection in our system has a 11/2 degre
freedom Hamiltonian dynamics.

Indeed, as was mentioned in the previous section,
relative vortex motion is periodic, i.e., the vortex triang
repeats its shape after a timeT. This does not imply a peri-
odicity of the absolute motion, since the triangle is rotated
some angleQ during this time, see Fig. 1. In general,Q is
incommensurate with 2p, rendering a quasiperiodic time de
pendence ofzl(t).

Let us consider a reference frame, rotating around
center of vorticity with an angular velocity

V[Q/T. ~17!

FIG. 1. Vortex trajectories fork50.3 in absolute reference
frame. Initial vortex positionsA,B ~two positive vortices! andC ~a
negative one! are marked with circles. Vortex triangleA8B8C8 cor-
responds tot5t01T/2, it is congruent to the initialDABC, but the
two positive vortices are transposed; after another half-period
relative motion the original orientation restores. Center of vortic
is marked by a ‘‘1.’’
4-4
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In this corotating reference frame, vortices return to th
original positions in one period of relative motionT ~see Fig.
2! and their new coordinates

z̃[z e2 iVt

are periodic functions of time.
In the corotating frame the advection equation retains

Hamiltonian form with a new stream functionC̃ that ac-
quires an extra~rotational energy! term

C̃[C1V2/2uzu2. ~18!

An advantage of this new frame is thatC̃ is time periodic:

C̃~ z̃, z̃̄,t1T!5C̃~ z̃, z̃̄,t ! ~19!

and well-developed techniques for periodically forc
Hamiltonian systems can be used to study its solutions.

Note that the one-period rotation angleQ is defined
modulo 2p, making the choice of the corotating frame no
unique. We remove this ambiguity by requiring the negat
vortex to make no full revolutions around the center of v
ticity in the corotating frame~as in Fig. 2!. This particular
choice ofV is inconsequential for further analysis. The on
period rotation angles, relative motion periods, and ang

FIG. 2. Same trajectories as in Fig. 1, plotted in the corotat
frame: vortex motion is periodic.
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velocities of the corotating frame are presented in the Ta
I. As the collapse is approached (k→1/2), T grows rapidly
@compare to the formula~13!#, and the vortices make mor
and more turns per period, an acceleration of the rota
speed is also observed.

We start our analysis of the advection by numerica
constructing Poincare´ sections of tracer trajectories~in the
corotating frame!. A Poincare´ section is defined as an orb
of a period-one~Poincare´! map P̂

P̂z05 z̃~T,z0!5e2 iQz~T,z0!, ~20!

where z̃(t,z0) denotes a solutionz̃(t) with an initial condi-
tion z̃(t50)5z0. Plots of Poincare´ sections for three differ-
ent values,k50.2, k50.3, andk50.41 are shown in Figs
3-5. Vortex and tracer trajectories were computed usin
symplectic fifth-order Gauss-Legendre scheme@49#. Exact
conservation of Poincare´ invariants by the symplectic
scheme suppresses numerical diffusion, yielding hi
resolution phase-space portraits.

The Poincare´ sections presented in Figs. 3-5 show an
tricate mixture of regions with chaotic and regular tracer d
namics, typical for periodically forced Hamiltonian system
All three phase portraits share common features with

g
FIG. 3. Poincare´ map of the system for the far from collaps

case. The constants of motion areK50, L50.9. Vortex strengths
are (20.2, 1, 1!. The period of the motion isT510.73.
TABLE I. Different values ofQ(T) and the associated quantities, the relative periodT and the resulting
apparent rotation speed.

k 0.2 0.3 0.41

Q(T) 24.18 . . .'2p/322p 29.4 . . .'p24p 228.6 . . .'0.9p210p
T 10.71 17.53 36.86
Vv5Q/T 20.39 20.54 20.78
4-5
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advection patterns found in a flow due to three identi
point vortices@40,43#: the stochastic sea is bounded by
more or less circular domain, there are a number of isla
inside it where the tracer’s motion is predominantly regul
In particular, all three vortices are surrounded by robust ne
circular islands, known as vortex cores. Contrary to the c
of three identical vortices, where the tracer dynamics is
tegrable for a special value of vortex energy~when the vor-

FIG. 4. Poincare´ map of the system for the intermediate cas
The constants of motion areK50, L50.9. Vortex strengths are
(20.3, 1, 1!. The period of the motion isT517.53.

FIG. 5. Poincare´ map of the system in the close to collapse ca
The constants of motion areK50, L50.9. Vortex strengths are
(20.41, 1, 1!. The period of the motion isT536.86.
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tices form a steadily rotating isosceles triangle! and has a
near-integrable character in the vicinity, the tracer motion
the near-collapse flow family considered here is alwa
strongly chaotic, the stochastic sea remains a principal
ment of the advection pattern for anyk. The phase portraits
indicate, that the degree of chaotization increases with
approach to collapse. For instance, in the far from colla
casek50.2 the islands of regular motion inside the stoch
tic sea occupy a considerable area, and ask increases, their
share drastically diminishes.

A decrease in the radii of the vortex cores is of particu
interest, since they are the robust structures, which also
pear in many-vortex systems. The upper bound on the c
radii can be obtained from the minimum-approach interv
tex distances. The minimum distance between the two p
tive vortices@see Eq.~12!# is

R1
min5S 12k

2k D k/2d

L21/4d, ~21!

at the same moment the distance between the negative v
and one of the two positives also reaches its minimu
which is

R2
min5

1

2 SA22k

k
21DR1

min. ~22!

At this moment the vortices are collinear. Since the sum
the core radii of two vortices cannot exceed the minimu
distance between them, we get an upper bound for the ra
of the positive vortex core,Rcore

1 and for that of the negative
one,Rcore

2 , in terms ofR1
min , R2

min :

Rcore
1 5minS 1

2
R1

min ,
1

11Ak
R2

minD
Rcore

2 5
Ak

11Ak
R2

min , ~23!

where we took into account the fact that the minimum d
tance between the positive and the negative vortex is sh
between the corresponding cores depending on rela
strength, and chose to define the boundary as the point
tween the two vortices with minimum speed. The core ra
measured directly from the phase portraits in Figs. 3, 4,
5, and their upper bounds, obtained from Eq.~23! are listed
in Table II.

The presence of islands where the motion is regular
the stochastic sea, is known to alter the transport prope
of a physical system. This phenomenon is known as ‘‘stic
ness’’; when a passive particle, traveling in the stocha
sea, gets close to an island, it is likely to stick to this isla
for a while and mimic a regular trajectory of a trapped p
ticle. And since with each island a whole hierarchy
smaller islands around islands is present, the particle
stick for arbitrarily long times, which affects the whole of th
transport properties of the system.

.

.
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In @41#, stickiness has been exhibited by measuring rec
rence times of particles to a given part of phase space,
plotting the particle’s positions on the map with a color a
cordingly to their return times. Particles, which have lo
return times, all stick to a particular island and do not jum
from one to another. Taking these facts into account, we
another way to visualize stickiness. Indeed, sticking partic
have all long, coherent time behavior, which reflects in qu
tities such as their angular speed, or intrinsic speed. We
cide then to compute the average intrinsic speed over a
nite amount of time of an ensemble of particles and recor
The measured quantity is the following

Vi~m,n!5
1

nTEt01nmT

t01n(m11)T

v i~ t !dt, ~24!

wheren is the number of periods over which the speed
averaged,m keeps track of the elapsed time, andv i(t) is the
instantaneous speed at timet of the particlei. We then define
the distribution of such averaged velocities as

r~V;n,m!5
1

Np
(

i
d@V2Vi~m,n!#, ~25!

and smooth it over an interval to obtain a continuous cur
In fact, as can be observed in Fig. 6, for which the speed
particles is plotted versus time, we can notice that afte
brief period of time the distribution seems stationary, me
ing thatr(V,n,m) is independent ofm and therefore we can
average its value overm, which in practice allows bette
statistics. Figure 6 is already informative, as we can no
some darker stripes, which means that some special ave
velocities are favored. This fits with the picture of some p
ticles sticking to some island for a long time~at least.10T
here!. To obtain this data we computed the trajectories o
10 000 periods for a sample of 253 particles and recor
every n510 periods. We use the stationarity property a
plot the distributionr versus the speedV for the three dif-
ferent casesk50.2, 0.3, 0.41; these are represented resp
tively in the Figs. 7, 8, and 9. We notice that the dark strip
observed in Fig. 6 correspond to peaks in the density pr
ability. In order to characterize the origin of these peaks,
plotted in Figs. 10, 11, and 12 the positions of the particle

TABLE II. Comparison of the observed size of the vortex cor
r 1, r 2 with their estimationsRcore

1 , Rcore
2 , given by Eq.~23!; the

external ‘‘radius’’ of the stochastic seaRsea, and the maximum
distance reached between identical vorticesR1

max.

k50.2 k50.3 k50.41

r 1 ;0.51 ;0.43 ;0.16
r 2 ;0.3 ;0.2 ;0.1
Rcore

1 0.69 0.57 0.19
Rcore

2 0.43 0.31 0.12
Rsea ;3.3 ;3.6 ;4
R1

max 1.48 1.68 2.11
03622
r-
nd
-

se
s
-
e-
fi-

it.

s

.
of
a
-

e
ge
-

r
d

d

c-
s
b-
e
n

the phase space contributing to the peaks in the distribu
function. As anticipated, each of the observed peak co
spond to a specific region of the phase space around s
island. Concerning the influence of collapse, we notice t
the area occupied by the contributing particles decrease
the critical condition is approached. We may then specu
that the transport properties of the three different syste
which we discuss in the next section, may differ in a su
stantive way.

FIG. 6. Averaged speedV over 10 periods vs time. We notic
that some velocities are favored. The distribution does not seem
be time dependent except at the very beginning. The constan
motion areK50, L50.9. Vortex strengths are (20.2, 1, 1!. The
period of the motion isT510.73.

FIG. 7. Probability distribution ofV5@s(t110T)2s(t)#/10T,
wheres is the arclength of a given tracer. We notice different pea
The constant of motion areK50, L50.9. Vortex strengths are
(20.2, 1, 1!. The period of the motion isT510.726.
4-7
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IV. ANOMALOUS STATISTICAL PROPERTIES
OF TRACERS

Deterministic description of the motion of a passive p
ticle in the mixing region is impossible, since a local ins
bility produces exponential divergence of trajectories, a
after a short time, the position of a tracer would be co
pletely unpredictable. Even the outcome of an idealized

FIG. 8. Probability distribution ofV5@s(t110T)2s(t)#/10T.
We notice different peaks. The constants of motion areK50, L
50.9. Vortex strengths are (20.3, 1, 1!. The period of the motion is
T517.53.

FIG. 9. Probability distribution ofV5@s(t110T)2s(t)#/10T.
We notice different peaks. The constants of motion areK50, L
50.9. Vortex strengths are (20.41, 1, 1!. The period of the motion
is T536.86.
03622
-
-
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merical experiment is nondeterministic in this situatio
since a round-off error is creeping slowly but steadily fro
the smallest to the observable scale. For this reason, lo
time behavior of tracer trajectories in the mixing region
usually studied within a probabilistic approach.

In the absence of long-term correlations, a kinetic desc
tion, which uses Fokker-Plank-Kolmogorov equation a
leads to Gaussian statistics,@50# works fairly well in many
cases. Yet, in the present case, the complex topology of
advection pattern, illustrated by the Poincare´ sections in
Figs. 3–5, indicates that one should anticipate anoma
statistical properties of the tracers in the chaotic sea. Sing
zones around KAM islands usually produce long-time cor
lations, which may result in essential changes in the part
kinetics. Although in some cases these ‘‘memory effect
can be accounted for by the modification of the diffusi
coefficient in the FPK equation@51,52#, often their influence
is more profound@30,53,54,41#, and leads to a superdiffusiv
behavior with faster-than-linear growth of the particl
displacement variance:

Š~x2^x&!2
‹;tm, ~26!

where the transport exponentm exceeds the Gaussian valu
m.1.

In this section we analyze the statistical properties of tr
ers in the chaotic region for three-vortex flow geometr
introduced above: far from collapse (k50.2, Fig. 3!, inter-
mediate (k50.3, Fig. 4!, and close to collapse (k50.41, Fig.

FIG. 10. Location on the Poincare´ section of the points with
definite ‘‘special’’ averaged velocity~compare to peaks in Fig. 7!.
In dark gray the points corresponding to 0.595,V,0.605. In light
and lighter gray the points corresponding respectively to 0.81,V
,0.83 and to 1.22,V,1.25. In black the points with correspond
ing speedsV.1.8. The constants of motion areK50, L50.9.
Vortex strengths are (20.2, 1, 1!. The period of the motion isT
510.73.
4-8
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FIG. 11. Location on the Poincare´ section of the points with
definite ‘‘special’’ velocity ~compare to peaks in Fig. 8!. In light
gray the points corresponding to 0.545,V,0.565. In black the
points with corresponding speedsV.1.5. In dark gray the points
corresponding toV,0.52. The constants of motion areK50, L
50.9. Vortex strengths are (20.3, 1, 1!. The period of the motion is
T517.53.

FIG. 12. Location on the Poincare´ section of the points with
definite ‘‘special’’ angular velocity~compare to peaks in Fig. 9!. In
light gray the points corresponding to 0.7488,V,0.7515. In black
the points with corresponding speedsV.1.5. In dark gray the
points corresponding toV,0.489. The constants of motion areK
50, L50.9. Vortex strengths are (20.41, 1, 1!. The period of the
motion isT536.86.
03622
5!. A plot of a time series of the arclength versus tim
si(t)5*v i(t)dt for a set of typical tracer trajectories~Fig.
13! reveals an intermittent character of tracer motion: ra
dom pieces of trajectory are interrupted by regular fligh
some of which are fairly long. To remain consistent wi
previous work, we focus our interest on the character
tracer rotation, and for that matter, we define its azimut
coordinate in the center of vorticity reference frame

u~ t ![Arg z ~27!

to be a continuous function of time, i.e.,u(t)P(2`,`)
keeps track of the number of revolutions performed by
tracer.

Mean advection anglêu(t)& ~here^ & denotes ensemble
average! grows linearly with time:

^u~ t !&5vt, ~28!

the values of the average rotation frequencyv for the three
cases are listed in Table III.

The growth of the variance

s2~ t ![Š@u~ t !2^u~ t !&#2
‹ ~29!

is faster than linear for all three cases: angular tracer di
sion is anomalous. One may see from log-log plots ofs2(t)
versus time in Fig. 14 that in order to describe the growth
the variance with a power law

s2~ t !;tm ~30!

FIG. 13. The deviation from the mean arclength@s(t)2^V&t# vs
time t is plotted for 30 particles. We notice the flights correspond
to a particle being in a the sticky zone around an island. The c
stants of motion areK50, L50.9. The run is over 20 000 periods
The average speed is^V&'0.87. Vortex strengths are (20.2, 1, 1!.
The period of the motion isT510.73.
4-9



fe
d
ar

s-
ar
ca

s
ce
se

-
a

nd

mo-
f

o-

um-

io

a

ge
tim

X. LEONCINI, L. KUZNETSOV, AND G. M. ZASLAVSKY PHYSICAL REVIEW E 63 036224
one has to introduce different transport exponents for dif
ent time ranges. The values of these exponents, obtaine
linear fits of corresponding parts of the graphs of Fig. 14,
given in Table III. Below, the first time range~with the ex-
ponentm1) will be referred to as ‘‘short times,’’ and the
second one (m2) ‘‘long times.’’

Recently@54#, two types of anomalous diffusion were di
tinguished by the behavior of the moments, other than v
ance. The case when the evolution of all of the moments
be described by a single self-similarity exponentn according
to

^ux2^x&uq&;tqn ~31!

was called ‘‘weak anomalous diffusion,’’ whereas the ca
whenn in ~31! is not constant, i.e.

^ux2^x&uq&;tqn(q) ~32!

FIG. 14. The second-order moment for the angle distribut

$^@u(t)2 ū(t)#2&% vs time for the three casesk50.2 ~solid line!,
k50.3 ~dashed line!, and k50.41 ~dot-dashed line!. We notice a
change of behavior for the large times. The constants of motion
K50, L50.9.

TABLE III. Basic values of transport properties. The avera
rotation speed of the tracers and the exponent related to the
evolution of the second moment are given.

k50.2 k50.3 k50.41

v 20.484 20.457 20.387
m1 1.563 1.479 1.679

T,33104 T,53104 T,105

m2 1.226 1.707 1.589
T.105 T.1.5•105 T.5•105
03622
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e
was named ‘‘strong anomalous diffusion.’’ The importan
of this distinction comes from the fact that in the weak ca
the pair distribution function~PDF! must evolve in a self-
similar way:

P~x,t !5t2n f ~j!, j[t2n~x2^x&! ~33!

whereas nonconstantn(q) in ~32! precludes such self
similarity. Note that a self-similar PDF evolution can have
form more general than~33!, with t2n replaced by an arbi-
trary decaying function of timeg(t):

P~x,t !5g~ t ! f @g~ t !~x2^x&!#, ~34!

which means that if for different time decadesg(t) has dif-
ferent asymptotics, the self-similarity exponentn will change
from one decade to another. This variation ofn with time ~in
particular, differences of transport exponents for short a
long times in Table III! is not related to the type~strong or
weak! of anomalous diffusion@67#.

We have performed the measurements of a set of
ments of tracer angular PDF~including noninteger values o
q) defined as

Mq~ t ![Šuu~ t !2^u~ t !&uq
‹ ~35!

for the three-vortex geometries. Time evolution of each m
ment was fitted by a power law:

Mq~ t !;tm(q) ~36!

separately for short and for long times. The results are s
marized in Figs. 15, 16, 17~short times! and 18, 19, 20~long

n

re

FIG. 15. The exponentqn(q) vs the moment orderq for the
angle distribution @Šuu(t)2^u(t)&uq

‹;tqn(q)# is plotted for the
small times (t,33104, or t,3000T). We notice two linear behav-
iors: m(q)50.79q for q,2, and m(q)50.94q1Cte for q.4.
Vortex strengths are (20.2, 1, 1!. The period of the motion isT
510.7.

e
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FIG. 16. The exponentm(q) vs the moment orderq for the
angle distribution@Šuu(t)2^u(t)&uq

‹;tm(q)# is plotted for the small
times (t,53104, or t,3000T). We notice two linear behaviors
m(q)50.62q (q,2), m(q)51.00q1Cte (q.2). The constants of
motion areK50, L50.9. Vortex strengths are (20.3, 1, 1!. The
period of the motion isT517.53.

FIG. 17. The exponentm(q) vs the moment orderq for the
angle distribution@Šuu(t)2^u(t)&uq

‹;tm(q)# is plotted for the short
times (t,105). We notice two linear behaviors:m(q)50.78q (q
,2), m(q)50.92q2Cte (q.2). The constants of motion areK
50, L50.9. Vortex strengths are (20.41, 1, 1!. The period of the
motion isT536.85.
03622
FIG. 18. The exponentm(q) vs the moment orderq for the
angle distribution@Šuu(t)2^u(t)&uq

‹;tm(q)# is plotted for the long
times (t.105). We notice two linear behaviors:m(q)50.62q (q
,2), m(q)51.01q2Cte (q.2). The constants of motion areK
50, L50.9. Vortex strengths are (20.2, 1, 1!. The period of the
motion isT510.7.

FIG. 19. The exponentm(q) vs the moment orderq for the
angle distribution@Šuu(t)2^u(t)&uq

‹;tm(q)# is plotted for the long
times (t.1.53105). We notice two linear behaviors:m(q)
50.75q (q,2), m(q)51.04q2Cte (q.2). The constants of mo-
tion are K50, L50.9. Vortex strengths are (20.3, 1, 1!. The
period of the motion isT517.53.
4-11
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times!, where the exponentsm(q) are plotted versus the mo
ment numberq. In all cases, the apparent absence of a sin
linear fit indicates the presence of strong anomalous di
sion. This property was also found in@41# ~by comparison of
the scaling properties of the central part of tracer PDF w
the behavior of the variance! in a flow due to three vortices
of equal strength. Thus, strong anomalous diffusion is a
neric property of advection in three-vortex flows.

Our results show, thatm(q) is well approximated by a
piecewise linear function of the form:

m~q!5H nq for q,qc

q2c if q.qc ,
~37!

wherec is a constant, andqc is a crossover moment numbe
qc5c/(12n). In @54#, where this form was introduced,
was found, that it fits fairly well the numerically obtaine
values ofm(q) in all cases of strong anomalous diffusio
considered there, although a theoretical example of a sys
with arbitrary~concave! m(q) was mentioned. Note, that de
viations from ~37!, occurring in the crossover regionq
'qc , are probably a result of finite observation time, and
form ~37! might be precise in the limitt→`.

As we have mentioned, the nonconstantn(q) in ~32! is
incompatible with the self-similar evolution of tracer distr
bution. Let us introduce an ‘‘almost self-similar distribu
tion’’

P~x,t !5H t2n f ~ t2nx! for x!vt

0 if x.vt,
~38!

FIG. 20. The exponentm(q) vs the moment orderq for the
angle distribution (Šuu(t)2^u(t)&uq

‹;tm(q)) is plotted for the long
times (106.t.53105). We notice two linear behaviors:m(q)
50.77q (q,2), m(q)50.82q2Cte (q.2). The constants of mo
tion are K50, L50.9. Vortex strengths are (20.41, 1, 1!. The
period of the motion isT536.85.
03622
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where the exact self-similarity~33! is broken only in the
time-dependence of the cutoff. This modification of the ex
self-similarity relation~33! takes into account the fact, tha
tracer speed is bounded by a maximum speedv. If f (j)
decays sufficiently fast at infinity~e.g., like a Gaussian!, the
cutoff behavior is irrelevant and the moments of~38! follow
~31!, but if f (j) has a power tail, the almost self-simila
distribution~38! will give the piecewise linear form~37! for
the moments. Iff (j);j2b for large j, then low moments
Mq with q,b21 will be determined by the central, sel
similar part of the distribution, and high moments (q.b
21) by the cutoff value,

Mq~ t !;H tnq for q,b21

tq2(12n)(b21) if q.b21,
~39!

which is equivalent to~37! with

c5~12n!~b21!. ~40!

We may conclude, that the piecewise linear dependenc
the exponentm(q) on the moment numberq is a signature of
an almost self-similar evolution of tracer distribution with
long-tailed f (j). The constantc in Eq. ~37! is related to the
self-similarity exponentn and power law decay exponentb
of f (j) by ~40!.

Another consequence of the intermittent character
tracer motion is an anomalous distribution of recurrences
the Poincare´ map of tracer trajectories. To define recu
rences, we take a regionB in the chaotic sea, and register a
returns of a Poincare´ map trajectory intoB. The length of a
recurrence is a time interval between two successive retu
In a system with perfect mixing, the PDF of recurren
lengths obeys a Poissonian law, providedB is small enough,
and decay of the long-recurrence tail of the distribution
exponential for anyB. Recurrence distributions for tracers
all three cases (k50.2, k50.3, andk50.41) are shown in
Figs. 21, 22, 23. The plots show that all distributions ha
long tails, indicating that between the returns tracers are
ing trapped in long flights of highly correlated motion. Th
form of the graphs suggests that long recurrences are dis
uted according to a power law

P~ t !;t2g. ~41!

The values of the exponentg(d) are

g~0.2!52.2, g~0.3!52.4, g~0.41!53.1. ~42!

Note, that while the collapse configuration is approached,
value of the exponent increases, which may be interprete
an improvement in mixing properties of the flow. This agre
with the changes in the structure of Poincare´ section~Figs.
10–12!: the closer to collapse we get, the bigger part of t
chaotic domain is occupied by a well-mixed area, and
smaller is the role of the singular zones around KAM islan

In fact, one can try to find out the influence of the diffe
ent islands on transport by using the distributions illustra
in Figs. 7–9. Indeed, each island corresponds to a spe
peak. We recompute the moments of the distribution in
4-12
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CHAOTIC ADVECTION NEAR A THREE-VORTEX COLLAPSE PHYSICAL REVIEW E63 036224
far-from-collapse casek50.2, for the modified data se
where the trajectories, corresponding to a specific peak
discarded. The result is presented in Fig. 24. We notice
the cores do affect the transport but their influence is es
tially visible for the high moments, while the slow particle

FIG. 21. Distribution of Poincare´ recurrences. The constants
motion areK50, L50.9. Vortex strengths are (20.2, 1, 1!. The
period of the motion isT510.7. The tail presents a power la
behavior whose exponent is;2.2. The simulation is performed
over 50 000 periods, statistics are made with 1137 particles.

FIG. 22. Distribution of Poincare´ recurrences. The constants
motion areK50, L50.9. Vortex strengths are (20.3, 1, 1!. The
period of the motion isT517.53. The tail presents a power la
behavior whose exponent is;2.4. The simulation is performed
over 50 000 periods, statistics are made with 1012 particles.
03622
re
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FIG. 23. Distribution of Poincare´ recurrences. The constants o
motion areK50, L50.9. Vortex strengths are (20.41, 1, 1!. The
period of the motion isT536.85. The tail presents a power la
behavior whose exponent is;3.1. The simulation is performed
over 50 000 periods, statistics are made with 637 particles.

FIG. 24. Exponents versus moment order in the casek50.2, the
difference with Fig. 15 or Fig. 18 is that here we did cut some pa
of the distribution. The star ‘‘*’’ indicates the slow motion~near
zero peak corresponding to the outer rim! has been removed, th
circle ‘‘o’’ the fast motion (V,21 corresponding to the cores! has
been removed. We notice two linear behavior with slopes 0.78
1, which is respectively similar to the low and high moment beh
ior of Fig. 15 or Fig. 18. This allows us to identify the individua
role in transport of the different structures in the phase space.
4-13
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trapped in the outer rim are mainly responsible for the l
moments; we also notice that we do not observe the cha
in slope of the strong anomalous behavior anymore, and c
clude that the strong anomalous feature is due to the in
play of the different structures in the phase plane.

V. KINETICS OF ADVECTED PARTICLES

In some of the previous publications~see, for example
@27,55,56,68#! it was clearly indicated that the properties
anomalous transport are sensitive to phase space topo
More specifically, if we use the fractional kinetic equatio
@50,55# in the form

]bP~u,t !

]tb
5D ]aP~u,t !

]uuua
~43!

to describe distributionsP(u,t) of rotations over angleu,
then the transport coefficientD and exponents (a,b) depend
on the presence of different structures such as boundarie
the domain, islands, cantori, etc. The results of Sec. IV sh
the stickiness of trajectories of advected particles to
boundary of the domain and to boundaries of islands. T
phenomenon is similar to what has been observed in@40# for
the same-sign vortices. Our goal of this section is to estim
the values of the exponentsa,b.

Figures 10–12 demonstrate stickiness of trajectories
specific structures with a filamentation of sticky doma
along stable/unstable manifolds. In fact, different sticky d
mains generate different intermittent scenarios with some
sociated values of (a,b) @55,56#. As a result, the real kinet
ics is multifractional and can be characterized by a se
values of (a,b) or, more precisely, by a spectral function
(a,b) in the same sense as the spectral function for mu
fractals@57–59#. Figures 7–9 show that trajectories, stickin
to different structures~islands!, have different angular ve
locities ~compare to peaks in Figs. 7–9!. Due to this, differ-
ent asymptotics to the distribution functionP(u,t) and dif-
ferent values of (a,b) will appear for different time
intervals. In other words, for a considered time interval o
can expect a specific ‘‘intermediate asymptotics’’ forP(u,t)
and, correspondingly, different pairs (a,b). Different classes
of universality for the values (a,b) were discussed in@56#.
Below we will apply some of these results.

Multiplying Eq. ~43! by uuua and integrating it overuuu
we obtain

^uuua&;tb ~44!

or, in the case of self-similarity the transport exponentm
from the equation

^uuu2&;tm ~45!

can be estimated as

m52b/a. ~46!

Expression~45! should be considered with some reservatio
since the second and higher moment may diverge. Fo
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finite time t,tmax particles reach a distance~angular rota-
tion! u,umax, which makes all moments finite. Typically a

umax5vmaxt ~47!

andvmax ~maximal angular velocity! can be reached only a
the boundary of the domain of chaotic motion~see Figs.
6–8!.

Using notations~31!, ~32!, and

m~2![m, ~48!

we can present the results for the transport exponentsm in
Table IV. They are almost the same independently of h
far is the control parameterk from its critical valuekc51/2
~the collapse condition!. For large values ofq we havem
close tom52 that corresponds to ballistic dynamics wi
a'b'1.

This result can be well understood from the stickiness
trajectories to the cores~see Figs. 10–12 in the black color!.
As it follows from distributions in Figs. 7–9, the particle
that stick to the cores are the fastest ones, and they
define the large moment values.

The value ofm for q52 is defined mainly by mesostruc
tures in the middle of Figs. 10–12~light gray!. A typical
property of these structures is existence of islands with w
resolved filamentations due to the vicinity of the structures
a bifurcation. The latter is evident from the sharp corners
islands, which may indicate a parabolic-type singular po
@60#. A corresponding effective Hamiltonian, describing d
namics near a singular point, has a form@61,60,55,62#:

He f f5a1~DP!21a2DQ2a3~DQ!3, ~49!

where (P,Q) are generalized momentum and coordinate a
(DP,DQ) are their corresponding deviations from the sing
lar point (P0 ,Q0):

DP5P2P0 , DQ5Q2Q0 . ~50!

Particularly, it may be

Q5u, P5 u̇. ~51!

Depending on the coefficientsaj and on the meaning o
variables (P,Q), which may be different from~51!, one can
describe singularity due to bifurcations for different types
dynamical modes: accelerator mode@61,60#, ‘‘blinking is-
land’’ mode@60#, ballistic mode@62#, etc. For all these situ-
ations, universality of the Hamiltonian~49! permits estima-
tion of the exponents (a,b) in Eq. ~43!

TABLE IV. Values of the transport exponentm for different
momentsq.

k q52 q.2

0.2 1.6 1.88
0.3 1.4 2.0
0.41 1.6 1.84
4-14



la

a

g

ra

to

e

tu
ty
i-
g
ra
n
ra

lu
l

to

t
-

er-
s,
ee
tion
in-
ell-
und
s-
ao-
out-
.
on-
f
in
of

-
s,
in

n of
red
red,
ed:
nant
rtex
sta-
the
the
al
ate

are
x-
r

adii,
to
nd

, it
tion

ncy

of

CHAOTIC ADVECTION NEAR A THREE-VORTEX COLLAPSE PHYSICAL REVIEW E63 036224
A trajectory that approaches the vicinity of the singu
point ~or, simply, a corner of the island boundary!, behaves
intermittently and escapes the near-separatrix bound
layer. The phase volume of the escaping trajectories is

dG5dPdQ, ~52!

where dP,dQ are valuesDP,DQ related to the escapin
particles. From Eq.~49! we can estimate

dPmax;dQ3/2 ~53!

and from~52!, ~53!

dG;dQ5/2. ~54!

Escaping from the boundary layer means growth of the ‘‘
dial’’ variable dQ with time, i.e. for an initial time interval
dQ;t, and consequently,

dG;t5/2. ~55!

From ~55! we conclude for the escape probability density
leave the boundary layer at time instantt within interval dt:

c~ t !}1/dG;t25/2. ~56!

It was shown in@63# that under special conditions th
exponentg for the trapping-time asymptotic distribution

c~ t !;t2g ~57!

can be linked to fractal time dimension. Moreover,g is re-
lated to the kinetic equation~43! as in @55#

b5g21. ~58!

For the considered case we haveb53/2.
For the spatial distribution of particles, the simplest si

ation occurs when the diffusion process has Gaussian
and, consequently,a52. In the case of the presence of h
erarchical set of islands,a can be defined through scalin
properties of the island areas. In the considered situation
dom walk is more or less uniform but trajectories are e
tangled near stable/unstable manifolds, i.e. in the light g
areas of Figs. 10–12. That means thata;2 although it is not
exactly 2. Finally, we arrive at

m52b/a;3/2 ~59!

in correspondence to observations in Table IV. The va
~59! was also discussed in@56# as one of possible universa
values for the transport exponentm.

We need to comment that it is not worthwhile to try
obtainm with a higher accuracy since a specific value ofm
has no meaning due to multifractal nature of transport@56#. It
is also important that we have considered such values of
control parameterk for which there exists a strong filamen
tation. That guarantees a possibility of using Eq.~49! and the
following analysis.
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VI. CONCLUSION

We have considered the dynamical and statistical prop
ties of the passive particle advection in a family of flow
created by three point vortices of different signs. In all thr
particular cases, investigated numerically, tracer advec
was strongly chaotic: advection patterns, visualized via Po
care sections of tracer trajectories are dominated by a w
developed stochastic sea, occupying most of the area aro
the center of vorticity. With the approach of the vortex sy
tem to the collapse configuration, the degree of tracer ch
tization increases: the stochastic sea grows, expanding
ward and consuming some of the inner resonant islands

The statistics of the tracers in the chaotic region is n
Gaussian. Anomalous diffusion~faster than linear growth o
variance! with different time and space scales was found
all three cases, as well as non-Poissonian distributions
Poincare´ recurrences~with power-law decay of long recur
rence probability!. We did not find normal transport regime
if such regime exist, they are confined to narrow windows
the parameter domain.

Transport anomalies are caused by the phenomeno
stickiness of the chaotic trajectories to the highly structu
boundaries of the chaotic region. In the cases conside
three important types of boundaries can be distinguish
external border of the chaotic sea, boundaries of the reso
islands inside the chaotic sea, and boundaries of the vo
cores. Each of these influences various aspects of tracer
tistics, analysis of their separate contributions shows that
vortex cores that rotate with the fastest rate determine
high moments of the tracer distribution while the extern
boundary, being the slowest but the most sticky, domin
the low moments.

Vortex cores appeared in simulations@64,43,40#, their ori-
gin and sizes were derived in@40# for a system of three
identical vortices; particularly it was shown that the cores
the islands of stability filled by invariant curves and e
tremely thin stochastic layers. As the control parametek
approaches the collapse valuekc51/2, the sizes of the vortex
cores noticeably decrease. An upper bound of the core r
obtained from the minimum distance of vortex approach
each other, gives a good estimation for both positive a
negative vortex core size.

Although the transport possesses multifractal features
can be successively described by a fractional kinetic equa
with characteristic exponentsa;2 and b;3/2. A corre-
sponding moments dependence is

^uuua&;tb. ~60!

The transport can be characterized by a strong intermitte
that manifests itself in strong deviation from~60! for higher
moments, i.e.,

^uuu2m&;tm(m) ~61!

with m'3/2 for m51 andm'2m for large values ofm. The
latter corresponds to a strong influence of ballistic regime
tracer dynamics.
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We note that the valueb;3/2 for a;2 has also been
observed for flows generated by three identical vortices@41#
and since this value remains for three-vortex flows with
treme stress~vicinity of collapse! we may reasonably specu
late that for all periodic~bounded! three-vortex flowsb
;3/2. We would like to point out that the present work b
analyzing the role played in transport by the different str
tures involved in the flow using various techniques, and
confirming a typical value of the second moment expon
should be of interest for the analysis of more realistic a
complicated systems involving many vortices and coher
structures such as geophysical fluid dynamics.
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APPENDIX: EXPONENTIAL PERIOD GROWTH

In this appendix, we recall some earlier results presen
in @42#, and compute an asymptotic of the period growth a
function of d51/22k.

It has been shown for the case of three vortices with t
identical ones that the relative motion of these vortices
be described using an one-dimensional effective Hamilton

He f f~Ẋ,X;L,K,k![P2/21V~X!50, ~A1!

with Hamiltonian equations

Ẋ5]He f f /]P[P, Ṗ52]He f f /]X, ~A2!

whereX5R1
2 is the square of the distance between the t

positive vortices, and the potentialV has the following form:

V~X![
@~K2~12k!X!224k2Y#@~X2K !224k2Y#

8p2k2Y2
,

Y5~LX!1/k. ~A3!
h

d
d
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Let us now estimate the period of the relative motion in o
case. In this paper we choose a situation withK50, using
then the transformation

U5X2/4k2Y ~A4!

the potential~A3! becomes

V~U !5
2

p2
k2~12k!2S U2

1

~12k!2D ~U21!, ~A5!

given the fact thatHe f f50, the motion is confined to the
negative regions of the potential that leads to

1<U<
1

~12k!2
. ~A6!

Consequently, we obtain from~A6! the boundaries forX
during the motion. We then compute the period of the re
tive motion using the effective potential

T52E
X1

X2 dX

A2V~X!
. ~A7!

In the limit d→0 (k→1/2), we obtain

V~U !;
1

8p2
~U24!~U21!, ~A8!

and using the inverse transformation

X5~4k2L1/kU !1/(221/k);~L2U !21/4d ~A9!

we express the period in terms ofU, which leads to

T;
1

4dE1

4 ~L2U !212~1/4d!

A~U21!~42U !
dU. ~A10!

As d→0 (k→1/2), it is the numerator in~A10! that defines
the asymptotic behavior, since it is the decreasing function
U, the dominant term is fromU51 that leads to

T;
1

d
L21/2d. ~A11!

Since the conditionL50.9,1 is verified~and is necessary
for the collapse to happen@42#!, we have an exponentia
growth of the period as the vortex-collapse configuration
approached.
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@36# E. A. Novikov, Zh. Éksp. Teor. Fiz.68, 1868 ~1975! @Sov.
Phys. JETP41, 937 ~1975!#.

@37# C. Sire and P. H. Chavanis, Phys. Rev. E61, 6644 ~2000!;
e-print cond-mat/9912222.
03622
-

.

.

,

E

@38# D. G. Dritschel and N. J. Zabusky, Phys. Fluids8, 1252
~1996!.

@39# H. Aref, Phys. Fluids22, 393 ~1979!.
@40# L. Kuznetsov and G. M. Zaslavsky, Phys. Rev. E58, 7330

~1998!.
@41# L. Kuznetsov and G. M. Zaslavsky, Phys. Rev. E61, 3777

~2000!.
@42# X. Leoncini, L. Kuznetsov, and G. M. Zaslavsky, Phys. Flui

12, 1911~2000!.
@43# Z. Neufeld and T. Te´l, J. Phys. A30, 2263~1997!.
@44# E. A. Novikov and Yu. B. Sedov, Zh. E´ksp. Teor. Fiz.77, 588

~1979! @Sov. Phys. JETP50, 297 ~1979!#.
@45# J. L. Synge, Can. J. Math.1, 257 ~1949!.
@46# J. Tavantzis and L. Ting, Phys. Fluids31, 1392~1988!.
@47# Y. Kimura, Physica D46, 439 ~1990!.
@48# H. Lamb,Hydrodynamics, 6th ed.~Dover, New York, 1945!.
@49# R. I. McLachlan and P. Atela, Nonlinearity5, 541 ~1992!.
@50# G. M. Zaslavsky, inTopological Aspects of the Dynamics

Fluids and Plasmas, edited by H. K. Moffattet al. ~Kluwer,
Dordrecht, 1992!, p. 481; Chaos4, 25 ~1994!; Physica D76,
110 ~1994!.

@51# B. V. Chirikov, Phys. Rep.52, 264 ~1979!.
@52# A. B. Rechester and R. White, Phys. Rev. Lett.44, 1586

~1980!.
@53# D. del-Castillo-Negrete, Phys. Fluids10, 576 ~1998!.
@54# P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, and

Vulpiani, Physica D134, 75 ~1999!.
@55# G. M. Zaslavsky, M. Edelman, and B. A. Niyazov, Chaos7,

159 ~1997!.
@56# G. M. Zaslavsky and M. Edelman, Chaos10, 135 ~2000!.
@57# H. G. E. Hentschel and I. Procaccia, Physica D8, 435 ~1983!;

P. Grassberger and I. Procaccia,ibid. 13, 34 ~1984!.
@58# U. Frisch and G. Parisi, inTurbulence and Predictability of

Geophysical Flows and Climate Dynamics, edited by M. Ghill,
R. Benzi, and G. Parisi~North-Holland, Amsterdam, 1985!.

@59# M. H. Jensen, L. P. Kadanoff, A. Libshaber, I. Procaccia, a
J. Stavans, Phys. Rev. Lett.55, 439 ~1985!; T. C. Halsey, M.
H. Jensen, L. P. Kadanoff, A. Libshaber, I. Procaccia, and B
Schraiman, Phys. Rev. A33, 1141~1986!.

@60# V. K. Melnikov, in Transport, Chaos and Plasma Physics,
Proceedings, Marseille, edited by F. Doveil, S. Benkadda, an
Y. Elskens~World Scientific, Singapore, 1996!, pp. 142–153.

@61# C. C. F. Karney, Physica D8, 360 ~1983!.
@62# V. Rom-Kedar and G. M. Zaslavsky, Chaos9, 697 ~1999!.
@63# E. W. Montroll and M. F. Shlesinger, inStudies in Statistical

Mechanics, edited by J. Lebowitz and E. Montroll~North-
Holland, Amsterdam, 1984!, Vol. 11, p. 1.

@64# A. Babiano, G. Boffetta, A. Provenzale, and A. Vulpiani, Phy
Fluids 6, 2465~1994!.

@65# C. Machioro and M. Pulvirenti,Mathematical Theory of In-
compressible Nonviscous Fluids, Applied Mathematical Sci-
ence 96~Springer-Verlag, New York, 1994!.

@66# P. Saffman,Vortex Dynamics, Cambridge Monographs on Me
chanics and Applied Mathematics~Cambridge University
Press, Cambridge, England, 1995!.

@67# S. Benkadda, S. Kassibrakis, R. B. White, and G.
Zaslavsky, Phys. Rev. E59, 3761~1999!.

@68# G. M. Zaslavsky and B. A. Niyazov, Phys. Rep.283, 73
~1997!.
4-17


