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Chaotic advection near a three-vortex collapse
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Dynamical and statistical properties of tracer advection are studied in a family of flows produced by three
point-vortices of different signs. Tracer dynamics is analyzed by numerical construction of Paiactoas,
and is found to be strongly chaotic: advection pattern in the region around the center of vorticity is dominated
by a well developed stochastic sea, which grows as the vortex system’s initial conditions are set closer to those
leading to the collapse of the vortices; at the same time, the islands of regular motion around vortices, known
as vortex cores, shrink. An estimation of the core’s radii from the minimum distance of vortex approach to
each other is obtained. Tracer transport was found to be anomalous: for all of the three numerically investi-
gated cases, the variance of the tracer distribution grows faster than a linear function of time, corresponding to
a superdiffusive regime. The transport exponent varies with time decades, implying the presence of multi-
fractal transport features. Yet, its value is never too far from 3/2, indicating some kind of universality. Statistics
of Poincarerecurrences is non-Poissonian: distributions have long power-law tails. The anomalous properties
of tracer statistics are the result of the complex structure of the advection phase space, in particular, of strong
stickiness on the boundaries between the regions of chaotic and regular motion. The role of the different phase
space structures involved in this phenomenon is analyzed. Based on this analysis, a kinetic description is
constructed, which takes into account different time and space scalings by using a fractional equation.
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I. INTRODUCTION The interest in the chaotic advection in a three-vortex sys-
tem is special not only for the reasons mentioned above. The

The understanding of the advection of passive tracers is dhree-vortex system is integrable, and its dynamics can be
fundamental interest for many different fields, ranging fromdescribed in an explicit analytical form. The addition of a
a pure mathematical problem, to transport- or mixing-relatedracer (that can be regarded as another vortex of vanishing
ones. One area extensively studied in the last decade is tlérculation brings the number of particles in the system to
so-called chaotic advectidd—9]. This phenomenon, result- four, which is a minimum number, from which the point
ing from a chaotic nature of Lagrangian trajectories, envortex chaos begin§33,34]; the relative simplicity of the
hances the mixing of tracers in laminar flows, while in thesystem permits us to study anomalous transport in consider-
absence of chaotic advection the mixing relies on the muclable detail. A discussion on the importance of three-vortex
less efficient mechanism of molecular diffusion. systems can be found {135].

Chaotic advection in geophysical flows is one of the im- In this paper, we investigate dynamical and statistical
portant areas of application, where the advected quantitiegroperties of the advection in flows produced by three point
vary from the ozone in the stratosphere to various pollutantgortices with different signs. For specific conditions on both
in the atmosphere and ocean, or such scalar quantities #se initial positions of the vortices and their strengths, the
temperature or salinity. The interest in the geophysical flowsollapse of the three vortices to a single point is then pos-
increases the practical significance of two-dimensid@gl)  sible. We first summarize the motivations for this work. It is
models and more specifically the advection in the system oknown that for systems involving a large number of vortices,
vortices[10—18. In addition to the large-scale geophysical the local density of vortices fluctuates, these fluctuations are
flows, 2D decaying turbulence is another example, where theelated to situations when few vortices are close to each other
inverse cascade of energy generates coherent stru¢nares and form a cluster. The number of vortices included in these
tices that dominate the evolution of the flo9—-24. This  clusters vary, but the typical number is around 343,36—
type of problem represents only one facet of the interest in38], while clusters involving four vortices or more are much
herent to the advection in few-vortices systems. Anothetess probable. A given cluster exists only for a definite finite
facet is related to the transport of advected particles. It igsime At. During its existence, the notion of space-time struc-
known from different observations and numerous modelsture of the cluster(or its configuration can be introduced,
that the transport of advected particles is anomalous and, iand hence the influence of this structure on typical tracers
one or another way, can be linked to the Levy-type processesotion and transport can be studied. Among different clus-
and their generalizationf27-31. Although these results ters, long-time transport properties will be most influenced
pertain to fairly simple flows and models, there are speculaby clusters of vortices with the largest lifetime. The typical
tions relating the chaotic advection in low-dimensional flowssize of a cluster can be approximately defined by the mini-
to particle dispersion in turbulent flowsee for example a mum distance obtained between two vortices. The closer the
discussion if32)). vortices are to each other, the stronger is their mutual inter-
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action and the longer the cluster lives. In order to change theected particle finds itself quite often in the vicinity of a
inter vortex distances it is necessary to consider a minimunaluster of 3—4 vortices, that define the advection kinetics for
of three-vortex interaction89,35,38. And to bring all vor-  a fairly long time-span. For our study, we chose three differ-
tices close togethdstrong interactionthe configuration be- ent cases, corresponding to a specific route to collapse: a far
tween the three vortices has to be close to a configuratioffom collapse situation, an intermediate one, and one near
leading to a collapse of the vortic€38]. A typical lifetime ~ the collapse. In these three cases the collapse of the vortices
estimation of these types of vortices can be assumed to & never reached and the motion of the vortices is periodic,
linked to the period of the motion of three vortices that areWhich allows the study of advection for large times and a
evolving on a close-to-collapse course. It is shown in thisbette'r understanding of transport in three-vortex fl_ows, as we
paper that the closer the vortices to a collapse configuratiorfonsider here an extreme case with bounded motion, namely,
the larger the period of the motion, and that the growth of thehe vicinity of collapse configuration. _ _
period is exponential with respect to the closeness to the N Sec. Il, we present the basic equations of the point
collapse configuratiorisee the Appendjx We then expect VOrtex dynamics, and discuss the collapse conditions in a
that some clusters may have arbitrary long lifetime. HavingNrée-vortex system. These results are based on the previous
in mind to shed some light on long-time transport propertiesStudies of the point-vortex collap$89,43—-41. We use the

of systems involving many vortices, we decided to considef’otations introduced i42], and develop some argumenta-
the simpler but nevertheless crucial case of transport propeon related to our choice of approaching the initial configu-
ties in three-vortex systems for close-to-collapse motion; thigation of the vortex system corresponding to the collapse
situation also provides an extreme situation best suited to te§PNfiguration. Advection equations are introduced in Sec. ll,
a possible universal transport property for three-vortex flowsWhere we present different tools used to investigate the dy-
A simple way to define how close a motion is from the exact@mic properties of tracers. \We focus on Poincaetions,
collapse course is through the deviations of the systems’ initoP0logy of the phase space, and trajectories, while in Sec.
tial parameters from the conditions necessary for collapsd? We present different statistical results. They include ve-
For instance, one condition for collapseiis=0 (whereK is locity dlstr|b.ut|c_>ns,_ dlstr|but|ons.of displacements and its
related to the angular momentum of the systemclose-to- moments, dl_strlbutlon of th_e Poincarecurrences, etc. An
collapse motion then necessarily satisfis$=e<1, ande ~ IMportant point of Sec. IV is to understand better how the
is the “distance” from the collapse condition. Hence a Spe_dlfferent regions of phase space influence the statistical prop-

cial attention should be given to the notion of “close-to- €rti€s of trajectories of advected particles. _
collapse motion,” as in the whole paper we are referring to On the basis of the obtained statistical information we
close for a small “distance” of the system in parameterconsider kinetics of advected particles in Sec. V. Fractional

space from the collapse conditions. And we insist that folKINetics is involved in that description, and corresponding
“close-to-collapse” motions in the previous sense, no col-Scalings and characteristic exponents are estlrrlated on the
lapse of the vortices occurs and the minimum distance of@Sis Of the results of Sec. IV. Motivation for the “3/2 law
approach between the vortices is finite. In this paper the mg2f the transport is speculated, as well as the multifractal
tion of the vortices chosen is periodic, which retains the posStructure of kinetics. Finally, in the Conclusion we discuss
sibility of investigating long-time transport properties of dlfferent_lmpllcatlons of the obtalned results anc_i a p_055|blll_ty
these types of flows. To conduct our study, we use the metH0 exploit them for the analysis of the advection in multi-
odology and the results of our previous works. The dynamicyOrex systems.

of tracers is analyzed in a spirit similar {d0], where the

structure of the advection pattefohaotic sea, resonant is-

lands, stochastic layers, coherent cores), @t investigated Il. NEAR-COLLAPSE VORTEX DYNAMICS

numerically and analytically for the case of three identical The eyolution of a system oR point vortices can be
vortices. Transport properties of the advection in that paryescribed by a Hamiltonian system Mfinteracting particles
ticular case(where no collapse or near-collapse vortex mo-(see for instanc48,65,66). The nature of the interaction
tion is possiblg were found to be anomalous j#1]. When  genends on the geometry of the domain occupied by the

vortex circulations have different signs, their dynamics mayfid. For the case of an unbounded plane, the system’s evo-
change considerably; the collapse phenomenon being one gftion is represented by

the most striking examples. The motion of vortices in the

vicinity of the collapsgwhen the collapse conditions are just

slightly violated was studied if42], where different routes _ OH -

in parameter space all leading to the collapse were outlined. kiz=—2i—=, z=2i
While the kinetics of advected particles in noncollapsing 9z,
three-vortex flows was described [id1], the situation with

the advection in the near-collapse flows remained unclear. In o

this article we describe different topological structures of theVith the Hamiltonian
advection pattern, depending on how far is the vortex system

from the collapse conditions. We can speculate, that the

characteristics of the transport of a three-vortex _system can H=— i 2 Kikon In|Z,— 2| = iln A, )
be extended to the case of many-vortex flows, since the ad- 2 (S 4w

s =1 N 1
ikzy (N @
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z,=x,+iy, is the complex coordinate of the vortéxk, its  possibility, t.:>0, corresponds to an actual collapse, while

strength and the couplé ,z) are the conjugate variables for t;<0 the vortex configuration expands without bounds.
of the HamiltonianH, to whom a new energy parameter is These two cases are exact images of each other under the

time-reversal symmetry, and we refer to both of them as

associated vortex collapse, keeping in mind, that fy<<O the collapse
singularity lies backward in time. During the motion, the
A=e*™=|] |z—2zy\kn, (3)  vortex configuration stays similar to the initial one, mean-
I=m while the area of the triangle, formed by the three vortices
. . grows/decreases linearly in time. We refer the reader to
in order to simplify subsequent formulas. [39,46,43 for more details.
The resulting complex velocity field is given by the sum When the collapse conditior() and(8) are satisfied only
of the individual vortex contributions: approximately, the motion has a specific “near-collapse”
LN L type characterized by an emergence of new scales of dis-
(2= = E K @ tances and velocities, which differ significantly from the ini

tial ones[42]. A detailed analysis of the near-collapse dy-
namics of three vortices was performed[#2] for the case
Whenz, evolves according to Eq&l), v provides a solution When two of the vortices have the same strength. A multitude

of the two-dimensional Euler equation, describing the dy.O!c motion re_'gimes was found in the vicinity of collapse;
namics of a singular distribution of vorticity different regimes are distinguished by the way the collapse

conditions(7) and (8) are violated, i.e., whether the combi-
N nationsX 1/, andK are greater, less, or equal to zero. More-
w(Z)=2 kd[z—z(1)] (5) over, for some of these combinations, the motion type also
=1 depends on the energ¥ of the vortex configuration; for
, i , ) ) ) i example, wher®1/k, <0 andK>0 there exist critical ener-
in an ideal incompressible two-dimensional fluid. giesA. and A, such that in the ranga. >A>A, the
The motion equationél) have, besides the energy, three motion has two branches of periodic motion, for= AC2 the

other conserved quantities resulting from the translational =~ =~ o _ .
and rotational invariance df: motion is aperiodic, and fo,r\>Ac2 there is only one peri-

odic branch left. A classification of the near-collapse motion
) N N regimes, including the behavior of their length and time
Q+|P=|Zl kiz, |-2=|21 kilz|?. (6)  scales as the collapse is approached, can be foufdPjn
N N In order to carry out a detailed study of the advection for
It can be easily verified, that there are three independent fir§l0Se-to-collapse situations, we restrict our consideration to a
integrals in involution:H, Q2+ P2, and L2, from which it specific o_ne-parameter family of near-collapsing vortex sys-
follows, that the motion of three vortices is always inte- tems, defined as follows.
grable. An analysis of possible regimes of the motion of
three vortices and their classification can be founBm46. (1) Only one of the collapse conditions, the strength con-
Among the different types of motion, there is an impor-dition (7), is violated; the second conditiai8) is satisfied,
tant special case known as vortex collapse. This motion is€e., K=0.
available when the sum of inverse vortex circulatighar- (2) The two positive vortices are identical, by an appro-
monic meanis zero, priate choice of time units their strength can be put to 1; in
other words, we fixk;=k,=1. The circulation of the third
vortex is negativeks=—k, (k>0). In this situation, the
=0 () collapse happens when the strength of the third vortex
reaches a critical valuk=k.=1/2. The “distance” of the
and vortex positions are such that the modified angular moSystem from the collapse can be measured by the amount of
mentumK, computed in the reference frame for which the the strength detuning,
center of vorticity is placed at the origin, vanishes S=k —k=1/2—k. 9)

2m 5 Tz (t)

>

3
I=1

1
ki

> We will be considering only the cas®&>0.

3

K= ( ,21 k') L2—(Q*+ Pz):,;m kikm|zi=2|*=0. (8) (3) The energy of the vortex configuratiohn is fixed to a
constant value\ =0.9.

Note, that the condition&7) and(8) do not specify the mo-

tion uniquely, rather, they define a range of energies, for The first two conditions ensure the relative vortex motion

which the collapse is possiblence the values df; satisfy-  to be periodic, and the choice of energy is such that in the

ing; Eq. (7) are giverj. When both of the conditions are approach to collapses(—0) the maximum intervortex dis-

satisfied, the solutions of Eql) are singular and all three tance grows very slowlyno noticeable changes in the range

vortices collide at the center of vorticity in a finite time. of § considered belojwhile the minimum intervortex dis-

Depending on the orientation of the vortex triangle, the coltance rapidly approaches zero. It gives us a convenient “col-

lapse timet, can be either positive or negative. The first lapse in a box” setting, where vortices initially separated by
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a distance of order one are brought arbitrarily cl¢sen- ' ' ' ' '
trolled by &) together, which may be of interest for studies of 257
transport in many-vortex systems. For instance, the ability to ol
bring vortices closer to each other by orders of magnitude
makes these three-vortex processes a dominant interactic 1.5}
mechanism in a rare gas of vortex patch&g].
Before proceeding to the discussion of the advection, we 1T
will briefly summarize the results frof@2] pertaining to our 05t
case. The dynamics of a three-vortex system with two iden-
tical vortices can be mapped to a one-dimensional Hamil->~ or
tonian system describing the motion of a particle with a unit
mass and zero total energy in an effective potential, that
depends on the strength of the third vortexand the con-
stants of motiom\ andK (see the Appendix The dynamical
variable X of this one-dimensional system is equal to the -1.5f
squared distance between the two positive vortices

-0.51

o} i
X=|z,~2z4|?, (10 2.5} 1
the other two distances can be found from the expressions fo -2 -1 0 1 2
A and K. And in our special caseK(=0) the motion is X
confined between two single roots of the potential, FIG. 1. Vortex trajectories fok=0.3 in absolute reference
frame. Initial vortex position#\,B (two positive vorticesandC (a
Kinin<X<Xmax: (17 negative ongare marked with circles. Vortex triangh¢ B'C’ cor-
responds ta=ty+ T/2, it is congruent to the initiaAABC, but the
where two positive vortices are transposed; after another half-period of
relative motion the original orientation restores. Center of vorticity
1—k\Ke 1\Ko is marked by a “+.”
X = ATV x| AU
min ( 2k ) ' max (zk) '
(12 . v — gV
z=—i—=, z=i—", (15
9z Jz

which implies thatX(t) is a periodic function of time, and
consequently the other inter-vortex distances are too, i.e., the
relative motion of vortices in our one-parameter family iswhere a stream function
always periodic.
As the collapse is approachek-(1/2, §—0), the mo- 1 3
tion tends to cover all length scale§y,in— 0, Xpyax— %, and W(z,z,t)=—=— >, k In|z—z(t)| (16)
its period diverges as 27 (=1

acts as a Hamiltonian. This system in nonautonomous, since
the stream function depends on time through the vortex co-
ordinates (t). The character of this depender(periodic or
(see the Appendix for the derivatipriThe influence of this noY is important for further analysis. Below we will show
behavior on the properties of advection is investigated in théhat although Eq(16) is quasiperiodic, it can be made peri-
next section. odic by an appropriate coordinate transformation, which
means that the advection in our system has a 11/2 degrees of
freedom Hamiltonian dynamics.

Indeed, as was mentioned in the previous section, the

A passive particlgtraced follows the flow according to relative vortex motion is periodic, i.e., the vortex triangle
the advection equation repeats its shape after a tirfie This does not imply a peri-

odicity of the absolute motion, since the triangle is rotated by

(14) some angle® during this time, see Fig. 1. In gener#), is
incommensurate with 2, rendering a quasiperiodic time de-
pendence of(t).

Let us consider a reference frame, rotating around the
center of vorticity with an angular velocity

1
T~SATH2 (13)

Ill. DYNAMICS OF THE ADVECTION

z=v(z,t),

wherez(t) represent the tracer trajectory, ands the veloc-
ity field. In the case of a point vortex system, the velocity
field is given by Eq.(4). The incompressibility of the flow
allows us to write the advection equati¢i) in a Hamil-
tonian form: O=0/T. (17
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FIG. 2. Same trajectories as in Fig. 1, plotted in the corotating

frame: vortex motion is periodic. FIG. 3. Poincaremap of the system for the far from collapse

case. The constants of motion de=0, A =0.9. Vortex strengths

In this corotating reference frame, vortices return to their®® (0-2. 1, 3. The period of the motion i§=10.73.

original positions in one period of relative motidnsee Fig.

2) and their new coordinates velocities of the corotating frame are presented in the Table

I. As the collapse is approachel-{1/2), T grows rapidly

F—y e i0t [compare to the formul&l3)], and the vortices make more
and more turns per period, an acceleration of the rotation
are periodic functions of time. speed is also observed.

In the corotating frame the advection equation retains its We start our analysis of the advection by numerically
Hamiltonian form with a new stream functiofr that ac- construpting Poincarsgctiops of tracer trqjectorie(m the .
quires an extrdrotational energyterm corotating framg A P0|,ncares§ct|on is defined as an orbit

of a period-ongPoincar¢ map P
V=V +02/2)7]2. (18 .- .
Pzy=2(T,zg)=€ '92(T,z,), (20)
An advantage of this new frame is tht is time periodic: ~ ~
wherez(t,z,) denotes a solutioz(t) with an initial condi-
T (2.2t+T)=V(z2,2,1) (190  tionz(t=0)=z,. Plots of Poincareections for three differ-
ent valuesk=0.2, k=0.3, andk=0.41 are shown in Figs.
and well-developed techniques for periodically forced3-5. Vortex and tracer trajectories were computed using a
Hamiltonian systems can be used to study its solutions.  symplectic fifth-order Gauss-Legendre schepd8]. Exact

Note that the one-period rotation angt® is defined conservation of Poincarénvariants by the symplectic
modulo 27, making the choice of the corotating frame non- scheme suppresses numerical diffusion, vyielding high-
unigue. We remove this ambiguity by requiring the negativeresolution phase-space portraits.
vortex to make no full revolutions around the center of vor- The Poincaresections presented in Figs. 3-5 show an in-
ticity in the corotating framdas in Fig. 2. This particular  tricate mixture of regions with chaotic and regular tracer dy-
choice of() is inconsequential for further analysis. The one-namics, typical for periodically forced Hamiltonian systems.
period rotation angles, relative motion periods, and angulaAll three phase portraits share common features with the

TABLE |. Different values of®(T) and the associated quantities, the relative pefi@hd the resulting
apparent rotation speed.

k 0.2 0.3 0.41

o(T) —4.18 ... =27/3-2m —94.. . ~7—A4w —28.6...~0.97— 107
T 10.71 17.53 36.86
0,=0/T —0.39 —0.54 —-0.78
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4 ' T - ' - - ' tices form a steadily rotating isosceles triangéad has a
near-integrable character in the vicinity, the tracer motion in
_ the near-collapse flow family considered here is always
strongly chaotic, the stochastic sea remains a principal ele-
ment of the advection pattern for aky The phase portraits
indicate, that the degree of chaotization increases with the
approach to collapse. For instance, in the far from collapse
. casek=0.2 the islands of regular motion inside the stochas-
tic sea occupy a considerable area, andk asreases, their
share drastically diminishes.

> or 1 A decrease in the radii of the vortex cores is of particular
interest, since they are the robust structures, which also ap-
-1 1 pear in many-vortex systems. The upper bound on the core
radii can be obtained from the minimum-approach intervor-
sl i tex distances. The minimum distance between the two posi-
tive vortices[see Eq(12)] is
-3F 1 ) 1—k k/26
RMin— A71/45 21
1 2k ’ ( )
3 2 4 o 1 2 3 a4 _ _
X at the same moment the distance between the negative vortex
FIG. 4. Poincaremap of the system for the intermediate case.\?vr;]?cﬁ?: of the two positives also reaches its minimum,
The constants of motion a€=0, A=0.9. Vortex strengths are
(—=0.3, 1, 2. The period of the motion i¥=17.53.
Rminzl 2—k_1 Rmin (22)
advection patterns found in a flow due to three identical 2 2 k 1

point vortices[40,43: the stochastic sea is bounded by a

more or less circular domain, there are a number of islandat this moment the vortices are collinear. Since the sum of
inside it where the tracer's motion is predominantly regular.the core radii of two vortices cannot exceed the minimum
In particular, all three vortices are surrounded by robust neardistance between them, we get an upper bound for the radius
circular islands, known as vortex cores. Contrary to the casef the positive vortex coreR;,,, and for that of the negative

of three identical vortices, where the tracer dynamics is innne'Rc_ore' in terms of RI"", RI":

tegrable for a special value of vortex energyhen the vor-

min

T )
\/E min

| Rgore=1+—\/ERz :

4 T T T T T T T R+

1
— H min
core=MiN > RY,

(23

where we took into account the fact that the minimum dis-
tance between the positive and the negative vortex is shared
between the corresponding cores depending on relative
] strength, and chose to define the boundary as the point be-
tween the two vortices with minimum speed. The core radii,

_ measured directly from the phase portraits in Figs. 3, 4, and
5, and their upper bounds, obtained from Ezp) are listed

in Table II.

The presence of islands where the motion is regular, in
the stochastic sea, is known to alter the transport properties
. of a physical system. This phenomenon is known as “sticki-
ness”; when a passive particle, traveling in the stochastic
sea, gets close to an island, it is likely to stick to this island
4 for a while and mimic a regular trajectory of a trapped par-

ticle. And since with each island a whole hierarchy of

FIG. 5. Poincarenap of the system in the close to collapse casesmaller islands around islands is present, the particle can
The constants of motion alé=0, A=0.9. Vortex strengths are stick for arbitrarily long times, which affects the whole of the
(—0.41, 1, 3. The period of the motion i =36.86. transport properties of the system.
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TABLE Il. Comparison of the observed size of the vortex cores
r*, r~ with their estimation®Ry,e, Roore, given by Eq.(23); the
external “radius” of the stochastic seds.,, and the maximum
distance reached between identical vortiBgs™.

+

k=0.2 k=0.3 k=0.41
rt ~0.51 ~0.43 ~0.16
re ~0.3 ~0.2 ~0.1
Riore 0.69 0.57 0.19
Roore 0.43 0.31 0.12
Rsea ~3.3 ~3.6 ~4
R 1.48 1.68 211 -0f

-100

In [41], stickiness has been exhibited by measuring recur- ol . . . . .,
rence times of particles to a given part of phase space, an O "’mA
plotting the particle’s positions on the map with a color ac-
cordingly to their return times. Particles, which have long FIG. 6. Averaged speed over 10 periods vs time. We notice
return times, all stick to a particular island and do not jumpthat.some velocities are favored. The distri.but?on does not seem to
from one to another. Taking these facts into account, we us@e t_|me dependent except at the very beginning. The constants of
another way to visualize stickiness. Indeed, sticking particle§'0tion areK=0, A=0.9. Vortex strengths are{0.2, 1, J. The
have all long, coherent time behavior, which reflects in quanP€'cd of the motion isr=10.73.
tities such as their angular speed, or intrinsic speed. We de-
cide then to compute the average intrinsic speed over a defihe phase space contributing to the peaks in the distribution
nite amount of time of an ensemble of particles and record itfunction. As anticipated, each of the observed peak corre-
The measured quantity is the following spond to a specific region of the phase space around some
island. Concerning the influence of collapse, we notice that

1 ftosn(ms )T the area occupit_eq by the contributing particles decreases as
Vi(mn)= — vi(t)dt, (24)  the critical condition is approached. We may then speculate
NTJto+nmt that the transport properties of the three different system,

) _ . _ which we discuss in the next section, may differ in a sub-
wheren is the number of periods over which the speed isstantive way.

averagedm keeps track of the elapsed time, andt) is the
instantaneous speed at timef the particlei. We then define

the distribution of such averaged velocities as 8
7r ]
1
p(Vinm)= == > S[V-V(m,n)], (25
Np 5 6l i
and smooth it over an interval to obtain a continuous curve. 5

In fact, as can be observed in Fig. 6, for which the speed of
particles is plotted versus time, we can notice that after a__
brief period of time the distribution seems stationary, mean—>E 4r 1
ing thatp(V,n,m) is independent ofm and therefore we can
average its value ovem, which in practice allows better 3l
statistics. Figure 6 is already informative, as we can notice
some darker stripes, which means that some special averac
velocities are favored. This fits with the picture of some par-
ticles sticking to some island for a long tinfat least> 10T
here. To obtain this data we computed the trajectories over 1t L ]

10000 periods for a sample of 253 particles and recordec
every n=10 periods. We use the stationarity property and 0 . ‘
plot the distributionp versus the speed for the three dif- 0.5 1 1.5 2
ferent case=0.2, 0.3, 0.41; these are represented respec- v

tively in the Figs. 7, 8, and 9. We notice that the dark stripes F|G. 7. Probability distribution of/=[s(t+ 10T) —s(t) /10T,
observed in Fig. 6 correspond to peaks in the density probwheresis the arclength of a given tracer. We notice different peaks.
ability. In order to characterize the origin of these peaks, werhe constant of motion ar& =0, A=0.9. Vortex strengths are
plotted in Figs. 10, 11, and 12 the positions of the particles i—0.2, 1, 3. The period of the motion i¥=10.726.
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Tr— T T T

p(V)

0 1 1 el
05 1 1.5 2
Vv

FIG. 8. Probability distribution ofV=[s(t+10T)—s(t)]/10T.
We notice different peaks. The constants of motion Kre0, A
=0.9. Vortex strengths are<{0.3, 1, 3. The period of the motion is
T=17.53.

FIG. 10. Location on the Poincamection of the points with
definite “special” averaged velocitfcompare to peaks in Fig.).7
In dark gray the points corresponding to 0.598<0.605. In light
and lighter gray the points corresponding respectively to 91
<0.83 and to 1.22 V<1.25. In black the points with correspond-
ing speedsvV>1.8. The constants of motion ate=0, A=0.9.
Vortex strengths are<{0.2, 1, 1. The period of the motion i§
=10.73.

IV. ANOMALOUS STATISTICAL PROPERTIES
OF TRACERS

Deterministic description of the motion of a passive par-
ticle in the mixing region is impossible, since a local insta- ical . . d inistic in this_ situati
bility produces exponential divergence of trajectories, andnerical experiment Is nondeterministic in this situation,
after a short time, the position of a tracer would be com-Since a round-off error is creeping slowly but steadily from

pletely unpredictable. Even the outcome of an idealized nu'E.he smalles_t to the observgble §cal¢. For th.'s. reason, Io'ng—
time behavior of tracer trajectories in the mixing region is

1 . . ‘ . . usually studied within a probabilistic approach.
In the absence of long-term correlations, a kinetic descrip-
0.9t . tion, which uses Fokker-Plank-Kolmogorov equation and
leads to Gaussian statistid§0] works fairly well in many
0.8¢ 1 cases. Yet, in the present case, the complex topology of the
advection pattern, illustrated by the Poincasections in
0.71 Figs. 3-5, indicates that one should anticipate anomalous
statistical properties of the tracers in the chaotic sea. Singular
0.6} . .
zones around KAM islands usually produce long-time corre-
S o5t | lations, which may result in essential changes in the particle
2 kinetics. Although in some cases these “memory effects”
0.4¢ 1 can be accounted for by the modification of the diffusion
coefficient in the FPK equatioib1,52, often their influence
0.3r 1 is more profound30,53,54,4], and leads to a superdiffusive
behavior with faster-than-linear growth of the particle-
0.2 displacement variance:
o ((x=(x)A~t#, (26)
00 1 2 \3/ 4 5 6 where the transport exponentexceeds the Gaussian value:
u>1.
FIG. 9. Probability distribution of/=[s(t+ 10T)—s(t)]/10T. In this section we analyze the statistical properties of trac-

We notice different peaks. The constants of motion l&re0, A ers in the chaotic region for three-vortex flow geometries
=0.9. Vortex strengths are<(0.41, 1, 3. The period of the motion  introduced above: far from collaps&=£0.2, Fig. 3, inter-
is T=36.86. mediate k=0.3, Fig. 4, and close to collaps&E0.41, Fig.
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FIG. 11. Location on the Poincaection of the points with
definite “special” velocity (compare to peaks in Fig.)8In light
gray the points corresponding to 0.54¥<0.565. In black the
points with corresponding speetds>1.5. In dark gray the points
corresponding to/<0.52. The constants of motion ake=0, A
=0.9. Vortex strengths are<{0.3, 1, 1. The period of the motion is
T=17.53.

=

FIG. 12. Location on the Poincaection of the points with
definite “special” angular velocitfcompare to peaks in Fig)9n
light gray the points corresponding to 0.7488<0.7515. In black
the points with corresponding speelds>1.5. In dark gray the
points corresponding tv<<0.489. The constants of motion afe
=0, A=0.9. Vortex strengths are{(0.41, 1, 3. The period of the
motion isT=36.86.

PHYSICAL REVIEW B3 036224

x 10

s(t)-<V>t

FIG. 13. The deviation from the mean arclenfit) —(V)t] vs
timet is plotted for 30 particles. We notice the flights corresponding
to a particle being in a the sticky zone around an island. The con-
stants of motion ar&=0, A=0.9. The run is over 20 000 periods.
The average speed {¢/)~0.87. Vortex strengths are0.2, 1, 1.

The period of the motion i§=10.73.

5). A plot of a time series of the arclength versus time
si(t)=fv;(t)dt for a set of typical tracer trajectorig§ig.

13) reveals an intermittent character of tracer motion: ran-
dom pieces of trajectory are interrupted by regular flights,
some of which are fairly long. To remain consistent with
previous work, we focus our interest on the character of
tracer rotation, and for that matter, we define its azimuthal
coordinate in the center of vorticity reference frame

o0(t)=Arg z (27

to be a continuous function of time, i.ed(t) e (—o,%)
keeps track of the number of revolutions performed by a
tracer.

Mean advection angléd(t)) (here( ) denotes ensemble
average grows linearly with time:

(6(1)) = wt, (28)

the values of the average rotation frequercyor the three
cases are listed in Table IlI.
The growth of the variance

o2 (H)=([o(t)—(6(1))]1%) (29

is faster than linear for all three cases: angular tracer diffu-
sion is anomalous. One may see from log-log plots-&fft)
versus time in Fig. 14 that in order to describe the growth of
the variance with a power law

a?(t)~t+ (30)
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TABLE lll. Basic values of transport properties. The average
rotation speed of the tracers and the exponent related to the time
evolution of the second moment are given.

k=0.2 k=0.3 k=0.41
w —0.484 —0.457 —0.387
U1 1.563 1.479 1.679
T<3x10 T<5x10 T<10° 4
o 1.226 1.707 1.589 G
T>10° T>1510 T>5.10° 3 9

one has to introduce different transport exponents for differ-
ent time ranges. The values of these exponents, obtained b
linear fits of corresponding parts of the graphs of Fig. 14, are
given in Table Ill. Below, the first time rangavith the ex-
ponentwq) will be referred to as “short times,” and the
second one g,) “long times.”

Recently{54], two types of anomalous diffusion were dis-
tinguished by the behavior of the moments, other than vari

7
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0 4 8
q

ance. The case when the evolution of all of the moments can

be described by a single self-similarity exponerdgccording
to

(Ix= ()~ (31

FIG. 15. The exponengv(q) vs the moment ordeq for the
angle distribution[ (| 6(t)—(6(t))|9)~t9"@] is plotted for the
small times {<3x 10%, or t<3000T). We notice two linear behav-
iors: wu(q)=0.79 for q<2, and u(q)=0.94q0+Cte for q>4.
Vortex strengths are<0.2, 1, 3. The period of the motion iF
=10.7.

was called “weak anomalous diffusion,” whereas the case

whenv in (31) is not constant, i.e.

(Ix=(x)| ) ~19"@ (32

9.5

8.5

log, 0[<(€)—<6>)2>]

FIG. 14. The second-order moment for the angle distribution

{([6(t)—?(t)]2)} vs time for the three casds=0.2 (solid line),
k=0.3 (dashed ling andk=0.41 (dot-dashed linge We notice a

was named “strong anomalous diffusion.” The importance
of this distinction comes from the fact that in the weak case
the pair distribution functiofPDF must evolve in a self-
similar way:

Px,)=t""f(&), &=t""(x=(x)) (33

whereas nonconstant(q) in (32) precludes such self-
similarity. Note that a self-similar PDF evolution can have a
form more general thafB3), with t~" replaced by an arbi-
trary decaying function of timeg(t):

P(x,t)=g(t)f[g(t)(x—=(x))], (34)

which means that if for different time decadgg) has dif-
ferent asymptotics, the self-similarity exponentill change
from one decade to another. This variatiorwafith time (in
particular, differences of transport exponents for short and
long times in Table Il is not related to the typéstrong or
weak of anomalous diffusion67].

We have performed the measurements of a set of mo-
ments of tracer angular PDncluding noninteger values of
q) defined as

Mq(t)=(lo(t) —(6(1))|) (39

for the three-vortex geometries. Time evolution of each mo-
ment was fitted by a power law:

Mg(t)~ @ (36)

change of behavior for the large times. The constants of motion areeparately for short and for long times. The results are sum-

K=0, A=0.9.

marized in Figs. 15, 16, 1(&hort timegand 18, 19, 2@long
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7t 7t ?
Z 4 4
1t 1t
0 4 8 0 ' 4 ' 8
4 q
FIG. 16. The exponent(q) vs the moment ordeq for the FIG. 18. The exponen(q) vs the moment ordeq for the

angle distributior{¢| 6(t) = (6(t))|%)~t*(¥] is plotted for the small angle distributior{ (| 4(t) —( 6(t))|%)~t*®] is plotted for the long
times t<5x10% or t<3000T). We notice two linear behaviors: times t>10°). We notice two linear behaviorgi(q)=0.62q (q
#(0)=0.62 (q<2), u(q)=1.00y+Cte (q>2). The constants of  <2), u(q)=1.01g—Cte (q>2). The constants of motion ate

motion areK=0, A=0.9. Vortex strengths are<0.3, 1, 3. The =0, A=0.9. Vortex strengths are<(0.2, 1, 1. The period of the
period of the motion iSr=17.53. motion isT=10.7.
7r 7L
= 4 = 4
O
F F oo
oO
OO
I I o
1r 1k
0 4 8 0 4 8
q q
FIG. 17. The exponent(q) vs the moment ordeq for the FIG. 19. The exponeni(qg) vs the moment ordeq for the

angle distributiorf {| 8(t) — ( 8(t)}| %~ t*(@] is plotted for the short angle distributior] {| 8(t) — { 8(t)}|9)~t*@] is plotted for the long
times ¢<10°). We notice two linear behaviorg:(q)=0.783 (q times {>1.5x10°). We notice two linear behaviorsu(q)

<2), n(g)=0.91—Cte (g>2). The constants of motion ake =0.79 (q<2), #(g)=1.040—Cte (q>2). The constants of mo-
=0, A=0.9. Vortex strengths are{(0.41, 1, 3. The period of the tion are K=0, A=0.9. Vortex strengths are—0.3, 1, 3. The
motion isT=36.85. period of the motion isT=17.53.
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7 ' ' ' where the exact self-similarity33) is broken only in the
time-dependence of the cutoff. This modification of the exact
self-similarity relation(33) takes into account the fact, that
tracer speed is bounded by a maximum speedf f(§)
decays sufficiently fast at infinite.g., like a Gaussianthe
cutoff behavior is irrelevant and the moments(88) follow
(31), but if f(¢£) has a power tail, the almost self-similar
distribution (38) will give the piecewise linear forng37) for

4r 1 the moments. Iff (&)~ ¢ # for large &, then low moments
My with g<g—1 will be determined by the central, self-
similar part of the distribution, and high momentg> 3
—1) by the cutoff value,

Q)

tva for q<pg-—-1
Mo(D~) ia-a-nee-n q>8-1, 39

which is equivalent tq37) with

. . c=(1-»)(B—1). (40
0 4 8
q

We may conclude, that the piecewise linear dependence of

the exponeni(q) on the moment numbeyis a signature of
FIG. 20. The exponenf.(q) vs the moment ordeq for the  an aimost self-similar evolution of tracer distribution with a

angle distribution (| 6(t) —(6(t))|%)~t*(?) is plotted for the long  |ong_tailedf(¢). The constant in Eq. (37) is related to the

times (16>t>5x10°). We notice two linear behaviorsu(q) self-similarity exponent and power law decay exponeft
=0.77 (9<2), x(gq)=0.8y—Cte (g>2). The constants of mo- of f(£) by (40)
tion areK=0, A=0.9. Vortex strengths are<0.41, 1, 3. The y )

period of the motion i<  36.85 Another consequence of the intermittent character of

tracer motion is an anomalous distribution of recurrences of

times, where the exponenis(q) are plotted versus the mo- the Poincaremap of tracer trajectories. To define recur-
’ P q P rences, we take a regidin the chaotic sea, and register all

ment nymbe_q. In all cases, the apparent absence of a Singl?eturns of a Poincarmap trajectory intd3. The length of a
linear fit indicates the presence of strong anomalous diffu- :

sion. This property was also found[i41] (by comparison of recurrence is a time interval between two successive returns.
) property y P In a system with perfect mixing, the PDF of recurrence

the scaling properties (_)f th(_a central part of tracer PD_F witr]engths obeys a Poissonian law, provideis small enough
the behavior of the variankén a flow due to three vortices and decay of the long-recurrence tail of the distribution is

of gqual strength. Thus,. strong anomalous diffusion s a geéxponential for anyB. Recurrence distributions for tracers in
neric property of advection in three-vortex flows.

Our results show, thak(q) is well approximated by a all three casesk=0.2, k=0.3, andk=0.41) are shown in
iecewise linear func’:tioraff)fqthe form: PP y Figs. 21, 22, 23. The plots show that all distributions have
P : long tails, indicating that between the returns tracers are be-

vq  for gq<d. ing trapped in long flights of highly correlated motion. The

w(q)= _ (37) form of the graphs suggests that long recurrences are distrib-
qg-c if a>qc, uted according to a power law
wherec is a constant, and, is a crossover moment number P(t)~t™7. (41

gc=c/(1—v). In [54], where this form was introduced, it
was found, that it fits fairly well the numerically obtained The values of the exponeni(s) are
values ofu(q) in all cases of strong anomalous diffusion,

considered there, although a theoretical example of a system

aggoﬂg't;gr{](ig%ca\éi (':U;J (r?i)nwaii Tﬁgtlgges(lbl\jg:e};h% de- Note, that while the collapse configuration is approached, the
’ 9 9199 " value of the exponent increases, which may be interpreted as

fT)r('jlrrcf(gw?()a %ﬁ?@g ;f;l;'et ?r]: ?Egﬁi;?tfza“on time, and thean improvement in mixing properties of the flow. This agrees

. . . with the changes in the structure of Poincaeztion(Figs.
. AS we have_mennoned, .th‘.a noncongtam(\q) in (32) IS 10-12: the closer to collapse we get, the bigger part of the
incompatible with the self-similar evolution of tracer distri-

buti Let introd ol t self-similar distrib chaotic domain is occupied by a well-mixed area, and the
ti(L)Jnl’c’m el us introduce an ~aimost sefi=similar distribu- gy jer is the role of the singular zones around KAM islands.

In fact, one can try to find out the influence of the differ-
ent islands on transport by using the distributions illustrated
(38) in Figs. 7-9. Indeed, each island corresponds to a specific
0 if  x>ut, peak. We recompute the moments of the distribution in the

(0.2=2.2, ¥(0.3=2.4, y(0.4)=3.1. (42

t7rf(t7 ") for x<uvt
P(x,t)=
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T
] FIG. 23. Distribution of Poincarescurrences. The constants of

FIG. 21. Distribution of Poincarescurrences. The constants of motion areK =0, A =0.9. Vortex strengths are{0.41, 1, ). The
motion areK=0, A=0.9. Vortex strengths are{0.2, 1, 3. The  period of the motion isT=36.85. The tail presents a power law
period of the motion isT=10.7. The tail presents a power law behavior whose exponent is3.1. The simulation is performed

behavior whose exponent is2.2. The simulation is performed over 50 000 periods, statistics are made with 637 particles.
over 50 000 periods, statistics are made with 1137 particles.

far-from-collapse cas&=0.2, for the modified data set,
where the trajectories, corresponding to a specific peak are
discarded. The result is presented in Fig. 24. We notice thar 9 - . -

the cores do affect the transport but their influence is essen 8
tially visible for the high moments, while the slow particles - ]
L~ e
7 : : g L
a s
- 57
o
=
g L
o
=3
=]
S L
1 L
0 4 8
q
FIG. 24. Exponents versus moment order in the ¢as8.2, the

difference with Fig. 15 or Fig. 18 is that here we did cut some parts
of the distribution. The star “*” indicates the slow motiofmear
zero peak corresponding to the outer yillas been removed, the
FIG. 22. Distribution of Poincareecurrences. The constants of circle “0” the fast motion (A< — 1 corresponding to the codsas
motion areK=0, A=0.9. Vortex strengths are<(0.3, 1, 2. The  been removed. We notice two linear behavior with slopes 0.78 and
period of the motion iST=17.53. The tail presents a power law 1, which is respectively similar to the low and high moment behav-
behavior whose exponent is2.4. The simulation is performed ior of Fig. 15 or Fig. 18. This allows us to identify the individual
over 50 000 periods, statistics are made with 1012 particles. role in transport of the different structures in the phase space.

20000

0 10000

T
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trapped in the outer rim are mainly responsible for the low TABLE IV. Values of the transport exponent for different
moments; we also notice that we do not observe the changeomentsa.

in slope of the strong anomalous behavior anymore, and con
clude that the strong anomalous feature is due to the inter- k q=2 q>2
play of the different structures in the phase plane.

0.2 1.6 1.88
0.3 1.4 2.0
V. KINETICS OF ADVECTED PARTICLES 0.41 16 1.84

In some of the previous publicatior{see, for example,
[27,55,56,68 it was clearly indicated that the properties of
anomalous transport are sensitive to phase space topolo
More specifically, if we use the fractional kinetic equation
[50,55 in the form

%ipite time t<<t,,,« particles reach a distandangular rota-
0n) 0< Omax, Which makes all moments finite. Typically all

Omax= @maxt (47)
J"P(6,1) ZDaap(g,t) (43) and wp,,x (Maximal angular velocitycan be reached only at
gtk 96| the boundary of the domain of chaotic motigsee Figs.
6-98).
to describe distribution®(6,t) of rotations over angld, Using notationg31), (32), and
then the transport coefficie and exponentsd, 8) depend
on the presence of different structures such as boundaries of w(2)=p, (48)

the domain, islands, cantori, etc. The results of Sec. IV show ]
the stickiness of trajectories of advected particles to théVe can present the results for the transport expongnits
boundary of the domain and to boundaries of islands. Thid @ble IV. They are aimost the same independently of how
phenomenon is similar to what has been observéd@hfor far is the control pgrametekrfrom its critical valuek.=1/2
the same-sign vortices. Our goal of this section is to estimatéhe collapse condition For large values ofj we haveu
the values of the exponents 3. close tou=2 that corresponds to ballistic dynamics with

Figures 10-12 demonstrate stickiness of trajectories t¢~8~1. o
specific structures with a filamentation of sticky domains ~This result can be well understood from the stickiness of
along stable/unstable manifolds. In fact, different sticky do-trajectories to the coresee Figs. 10-12 in the black color
mains generate different intermittent scenarios with some ad?s it follows from distributions in Figs. 7-9, the particles
sociated values ofd, 8) [55,56. As a result, the real kinet- tha_t stick to the cores are the fastest ones, and they just
ics is multifractional and can be characterized by a set ofléfine the large moment values. _
values of @, ) or, more precisely, by a spectral function of ~ The value ofu for g=2 is defined mainly by mesostruc-
(«,B) in the same sense as the spectral function for multifures in the middie of Figs. 10-1@ight gray). A typical
fractals[57—59. Figures 7—9 show that trajectories, sticking Property of these structures is existence of islands with well-
to different structuregislands, have different angular ve- resolved filamentations due to the vicinity of the structures to
locities (compare to peaks in Figs. 7-Due to this, differ- @ bifurcation. The latter is evident from the sharp corners of
ent asymptotics to the distribution functid®(6,t) and dif-  islands, which may indicate a parabolic-type singular point
ferent values of &, B) will appear for different time [60]._A correspondlng effe_ctlve Hamiltonian, describing dy-
intervals. In other words, for a considered time interval ong’@Mics near a singular point, has a fof61,60,55,62
can expect a specific “intermediate asymptotics” R(6,t) _ 2
and, correspondingly, different paira (3). Different classes Herr=a1(AP)*+8,4Q~as(AQ)”, (49
of universality for the valuesd,3) were discussed if66].
Below we will apply some of these results.

Multiplying Eq. (43) by |#|* and integrating it ovetd|
we obtain

where P,Q) are generalized momentum and coordinate and
(AP,AQ) are their corresponding deviations from the singu-
lar point (Pg,Qq):

AP=P—-Py, AQ=Q-Qq. 50
. L Particularly, it may be
or, in the case of self-similarity the transport expongnt
from the equation

Q=6, P=6. (51)
2\ __tHm
(o1~ (45) Depending on the coefficientg and on the meaning of
can be estimated as variables P,Q), which may be different fronf51), one can
describe singularity due to bifurcations for different types of
w=2pla. (46) dynamical modes: accelerator mop&l,60, “blinking is-

land” mode[60], ballistic mod€e[62], etc. For all these situ-
Expression(45) should be considered with some reservationsations, universality of the Hamiltoniaf#9) permits estima-
since the second and higher moment may diverge. For #ion of the exponentsd, 8) in Eq. (43
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A trajectory that approaches the vicinity of the singular VI. CONCLUSION
point (or, simply, a corner of the island boundarpehaves
intermittently and escapes the near-separatrix boundar%(e
layer. The phase volume of the escaping trajectories is

We have considered the dynamical and statistical proper-
s of the passive particle advection in a family of flows,
created by three point vortices of different signs. In all three
ST = 5P S5Q (52) particular cases, investigated numerically, tracer advection
' was strongly chaotic: advection patterns, visualized via Poin-
care sections of tracer trajectories are dominated by a well-
developed stochastic sea, occupying most of the area around
the center of vorticity. With the approach of the vortex sys-

where 6P, 5Q are valuesAP,AQ related to the escaping
particles. From Eq(49) we can estimate

5Py~ 6Q32 (53  tem to the collapse configuration, the degree of tracer chao-
tization increases: the stochastic sea grows, expanding out-
and from(52), (53) ward and consuming some of the inner resonant islands.
The statistics of the tracers in the chaotic region is non-
ST ~ 50572, (54) Gaussian. Anomalous diffusigifaster than linear growth of

variance with different time and space scales was found in
Escaping from the boundary layer means growth of the “ra-all three cases, as well as non-Poissonian distributions of
dial” variable §Q with time, i.e. for an initial time interval ~Poincarerecurrencegwith power-law decay of long recur-

5Q~t, and consequently, rence probability. We did not find normal transport regimes,
if such regime exist, they are confined to narrow windows in
ST ~1572, (55  the parameter domain.

Transport anomalies are caused by the phenomenon of
From (55) we conclude for the escape probability density tostickiness of the chaotic trajectories to the highly structured
leave the boundary layer at time instantithin interval dt: boundaries of the chaotic region. In the cases considered,
three important types of boundaries can be distinguished:
()< 1/ST ~t~ 572, (56) external border of the chaotic sea, boundaries of the resonant
islands inside the chaotic sea, and boundaries of the vortex
It was shown in[63] that under special conditions the cores. Each of these influences various aspects of tracer sta-
exponenty for the trapping-time asymptotic distribution tistics, analysis of their separate contributions shows that the
vortex cores that rotate with the fastest rate determine the
Pp(t)~t™7 (57 high moments of the tracer distribution while the external

] . . . _ boundary, being the slowest but the most sticky, dominate
can be linked to fractal time dimension. Moreoverjs re-  the low moments.

lated to the kinetic equatio®3) as in[55] Vortex cores appeared in simulatidiget,43,4Q, their ori-
gin and sizes were derived 0] for a system of three
B=vy—1. (58)  identical vortices; particularly it was shown that the cores are
the islands of stability filled by invariant curves and ex-
For the considered case we hafe 3/2. tremely thin stochastic layers. As the control paraméter

For the Spatial distribution of pal’ticles, the Simplest SitU'approacheS the C0||apse VakLe: 1/2, the sizes of the vortex
ation occurs when the diffusion process has Gaussian typgsres noticeably decrease. An upper bound of the core radii,
and, consequentlyy=2. In the case of the presence of hi- gbtained from the minimum distance of vortex approach to
erarchical set of islandsy can be defined through scaling each other, gives a good estimation for both positive and
properties of the island areas. In the considered situation rafregative vortex core size.
dom walk is more or less uniform but trajectories are en- Ajthough the transport possesses multifractal features, it
tangled near stable/unstable manifolds, i.e. in the light gray.an be successively described by a fractional kinetic equation
areas of FIgS 10-12. That means that2 although it is not with characteristic exponemBNZ and IB~3/2 A corre-
exactly 2. Finally, we arrive at sponding moments dependence is

w=2pBa~3/2 (59 (| 6]y ~t~. (60)

in correspondence to observations in Table IV. The valu
(59 was also discussed {B6] as one of possible universal
values for the transport exponemt

We need to comment that it is not worthwhile to try to
obtain u with a higher accuracy since a specific valueuof
has noMmeaning d%e to multifra>c/tal nature gf transﬁﬁﬁfll? (| 6™y~ (61)
is also important that we have considered such values of the
control parametek for which there exists a strong filamen- with u~3/2 form=1 andu~2m for large values ofm. The
tation. That guarantees a possibility of using &) and the latter corresponds to a strong influence of ballistic regime of
following analysis. tracer dynamics.

eI'he transport can be characterized by a strong intermittency
that manifests itself in strong deviation frof@0) for higher
moments, i.e.,
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We note that the valu@~3/2 for «~2 has also been Let us now estimate the period of the relative motion in our
observed for flows generated by three identical vortj[égd$  case. In this paper we choose a situation WKt 0, using
and since this value remains for three-vortex flows with exthen the transformation
treme stressvicinity of collapse we may reasonably specu-
late that for all periodic(bounded three-vortex flowsg U=X/4k?Y (A4)
~3/2. We would like to p(_)int out that the present work by the potential(A3) becomes
analyzing the role played in transport by the different struc-
tures involved in the flow using various techniques, and by
confirming a typical value of the second moment exponent
should be of interest for the analysis of more realistic and
complicated systems involving many vortices and coherent
structures such as geophysical fluid dynamics. given the fact thatH.=0, the motion is confined to the

negative regions of the potential that leads to

2 1
V(U)=—2k2(1—k)2(U— )(U—l), (A5)
T (1

_k)Z
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In the limit 6—0 (k—1/2), we obtain
APPENDIX: EXPONENTIAL PERIOD GROWTH

In this appendix, we recall some earlier results presented V(U)~ LZ(U—4)(U -1), (A8)
in [42], and compute an asymptotic of the period growth as a 87
function of 6=1/2—k.

It has been shown for the case of three vortices with tw
identical ones that the relative motion of these vortices can X=(4k?AYky) V=) (A2~ 140 (A9)

be described using an one-dimensional effective Hamiltonian o )
we express the period in terms Of which leads to

Oand using the inverse transformation

Herf(X,X; A, K, K)=P?/2+V(X)=0, (A1) 1 (4 (A2U)"1-W4)
T~ 15 —=dU. (A10)
with Hamiltonian equations 1V(U-1)(4-U)
_ . As 6—0 (k—1/2), it is the numerator ifA10) that defines
X=0Hgsi/dP=P, P=—0dHgs/X, (A2)  the asymptotic behavior, since it is the decreasing function of
U, the dominant term is frofd =1 that leads to
whereX=R? is the square of the distance between the two L
positive vortices, and the potentidlhas the following form: T~ (_SA,l/zg_ (A11)

_ [(K—(1-k)X)?—4k?Y][(X—K)?—4k?Y]

V(X) Since the conditiomL =0.9<1 is verified(and is necessary
8m’k2Y? ' for the collapse to happef2]), we have an exponential
growth of the period as the vortex-collapse configuration is
Y=(AX)¥, (A3)  approached.
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